
©2025 Query.AI, Inc. • All rights reserved • QWP-06

Definitive Guide to Open Cybersecurity
Schema Framework (OCSF) Mapping
Contributed by: Jonathan Rau & Aurora Starita

©2025 Query.AI, Inc. • All rights reserved • QWP-06

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Introduction to OCSF ...

Yapping About Mapping ..

Minimum Necessary Mapping ...

Mapmaxxing ..

Wrap Up ..

Table of Contents

1

2

8

12

14

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 1

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Introduction to OCSF
The Open Cybersecurity Schema
Framework (OCSF) is an open-source
and collaborative effort across the
industry to define a vendor- and
platform-agnostic schema for security
and IT observability data. It has been
contributed to by Query, Amazon
Web Services (AWS), Splunk, Cisco,
Crowdstrike, and several dozen other
organizations and individuals.

The OCSF schema provides
standardization and normalization of
data into a hierarchical data model that
can be used in Security Information &
Event Management (SIEM), Extended
Detection & Response (XDR), security
data lakehouses, and much more for
analytics, just-in-time querying, machine
learning, and effective storage of data.

It can be overwhelming for newcomers
to learn about the schema and all it
entails. The best place to start is with
our beginner’s guide or the white paper
Understanding the Open Cybersecurity
Schema Framework by Paul Agbabian at
Splunk, or for a navigable experience, the
official OCSF Schema Server.

Finally, to find out why Query.ai
uses the OCSF as our data model for
normalization and searching see our
blog post: OCSF: Why We Choose It for
Query by Jeremy Fisher, CTO at Query.

We realize that not everyone learns
in the same way. While reading and
navigating the schema can help some,
starting from a known good point is also
helpful. Refer to the Mappings GitHub
repo for examples of various security
systems mapped into the OCSF schema
by the community.

However, this paper will teach you how
to map from start to finish. We will
focus on the theory of mapping, teach
you some intricacies of how to map
data, why mapping data into OCSF
is important, and provide a deeper
understanding of how the OCSF data
model works.

By the end, you will understand the
nuances and the “minimum necessary”
concept of mapping into OCSF.

https://github.com/ocsf/ocsf-docs/blob/main/overview/understanding-ocsf.pdf
https://github.com/ocsf/ocsf-docs/blob/main/overview/understanding-ocsf.pdf
https://schema.ocsf.io/1.0.0/
https://www.query.ai/resources/blogs/ocsf-why-we-choose-it-for-query/
https://www.query.ai/resources/blogs/ocsf-why-we-choose-it-for-query/
https://github.com/ocsf/examples/tree/main/mappings
https://github.com/ocsf/examples/tree/main/mappings

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 2

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Yapping About Mapping
The concept of “mapping” speaks to
transforming a raw log, event, or
finding from a source platform into the
OCSF schema. You “map” the data by
determining which OCSF attribute(s) your
source data will fit into. Using various
libraries in your language of choice—such
as Python, Golang, Rust, or otherwise—
you parse the upstream data into the final
OCSF event.

Another term used is “producing” OCSF
or being an OCSF “producer”, and this
refers to security and IT observability tools
providing output in native OCSF format
by default.

Seems simple right? Yo, not so fast. There
is a lot more nuance than just simply
trying to find the best fit, as multiple
attributes can use the same upstream data,
not to mention the different data types
in the OCSF schema as well. As noted,
OCSF provides both normalization and
standardization.

Normalization
Normalization is provided by virtue of
the schema itself. It provides generalized
attributes that can accept many
mappings. For instance, the OCSF
attribute of ip inside of the Device object
(a collection of thematically related
attributes) can be used to normalize the IP
address data of a device.

In this case, Device can refer to a laptop
or desktop record in an Configuration
Management Database (CMDB), it can refer
to a Desktop-as-a-Service (DaaS) virtual
workstation such as an AWS WorkSpaces
instance or Amazon AppStream 2.0
instance, or it can refer to a virtual machine
in VMWare eSXI.

The ip attribute can be mapped into from
several different upstream keys such as
“IPAddress”, “IPV4_Address”, “ip_address”,
“lastIpAddress”, “DeviceIp”, “PrivateIp”, and
any other variation.

Normalization is important because this
allows for predictable and repeatable
patterns of analysis, querying, and/or
visualization of the results and makes it
easier for mapping the data.

Likewise, it makes mapping or producing
OCSF repeatable. Within the schema
there are descriptions provided for every
attribute to help consumers, mappers, and
producers understand the intended usage
as well.

https://schema.ocsf.io/1.3.0/objects/device?extensions=

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 3

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Standardization
Standardization is important to provide
more predictability and repeatability,
but also, to act as a mechanism to
validate the schema against. This
Is useful for ensuring that public
contributions to OCSF are valid, but
also helps to confirm that mappings are
done correctly.

With both normalized and standardized
schema elements in mind, it becomes
simpler to write detection content or
other queries against data mapped
to OCSF given the strongly typed and
verifiable data model.

Instead of accounting for the various
ways severity can be represented—
numerically or with strings, with many
variations—it’s simpler to write against
a numerically scaled and normalized
attribute, such as severity_id.

Likewise, when looking for a specific
device by its IP, it’s much simpler to
standardize against device.ip,
 instead of the many variations and
locations IP data can be placed in
downstream datasets.

OCSF Basics for Mapping
Attributes
At the simplest level, OCSF is a
collection of key-value pairs that are
called attributes. Every attribute has a
human readable Caption and an actual
“name” which is the Key.

For example, the OCSF attribute
message is captioned as “Message”
and severity_id is captioned as
“Severity ID”. The value of the attribute
is whatever the upstream data source
value is. You do not use the Captions of
attributes when you are mapping data.

Another note on standardization:
Standardization provides consistency on
how the data is represented, specifically
the data types and formats.

For example, the aforementioned
message attribute is defined as a string
whereas severity_id is an integer
which is defined by an enumeration
(enum). The enum correlates integers
with a specific value such as 1 stands for
Informational and 6 stands for Fatal.

Every single attribute in OCSF has a data
type and some can be more complex
such as an array of strings or string-based
enumeration. Both the OCSF Server and
the actual OCSF dictionary.json define
these types.

An important metaschema point to
note is that attributes can also refer to
other objects as their data type. For the
most part, attributes are scalar (strings,
integers, booleans, floats), but attributes
can also use an object as a data type.

{

“message”: “this is my OCSF event!”,
 “severity_id”: 1

}

https://schema.ocsf.io/1.3.0/dictionary?extensions=

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 4

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Objects
Objects can most easily be thought
about as literal JSON objects (or Python
dictionaries) which is a literal data
type that contains a collection of key-
value pairs and is denoted with curly
braces ({}).

Event Classes (which we’ll cover more
thoroughly shortly) define the intended
normalization and standardization of
generic security data and are made up
of attributes and objects. Like the Event
Class, objects are aligned to a “thing”
or “entity” that is encountered within
security or IT observability data.

For instance, the Device object is a
collection of attributes to represent
any device (workstation, server, laptop,
VM, DaaS, etc.) such as the IP address
(ip), the ownership data (owner, which
is in turn its own object), the Unique ID
(uid), or an Active Directory Common
Name (uid_alt).

There are several objects within the HTTP
Activity event class, such as the HTTP
Request object which defines common
attributes seen in HTTP requests such as
the method (http_method) or the User
Agent (user_agent).

The important thing to remember is that
the attributes—either directly inside of
the Event, or within an object—are not
exclusively mapped.

You may have upstream data such as an
IP address or a unique ID of a connection
such as a trace ID or other GUID that can
be used in other objects.

For instance, you could use the Trace ID
within AWS ALB logs and map it to the
Unique ID (uid) attribute inside of the
Metadata object, the Connection Info
object, and the HTTP Request object.

https://schema.ocsf.io/1.3.0/objects?extensions=

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 5

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Categories, Event Classes, and Extensions
Zooming out on the schema, when you map there are some
themes to keep in mind. OCSF at the top-most level is organized
by Categories which are containers of similar Event Classes
(sometimes called an Event or a Class).

The Event Classes define the intended usage for normalization,
such as the HTTP Activity event class intended to normalize and
standardize any HTTP data, logs, or events from an upstream
source.

For instance, you can normalize Web Application FIrewalls
(WAF), Next-Gen Firewalls (NGFW), Intrusion Detection Systems
(IDS) with HTTP rulesets, layer 7 load balancer logs, and anything
else with HTTP traffic in it to this Event Class.

The Categories group like Events, and so the Network Activity
category contains the HTTP Activity event class but it also
contains others such as SSH Activity and DNS Activity.

Similarly, the Identity & Access Management category contains
Authentication and Group Management, the Discovery category
contains several Inventory Information event classes, and so on.

The Category is reflected in the category_uid and category_
name attributes which can be helpful to query or report on using
visualizations to quickly identify the grouped Events.

The Event Classes define the actual schemata for downstream
logs, events, findings, alerts, incidents, or any other “happening”
worth recording and mapping.

On top of being very hierarchical and strongly typed, OCSF
has another important feature for its scope: extensibility. The
concept of extensibility is defined within the metaschema that
allows other parts of the schema to be referenced and extended.

For example, the “Base Event” is the genesis point for every
other Event Class within the schema, and it defines the basic
attributes and objects that encompass all Event Classes.

Common attributes such as the category_id, message,
severity_id, and several other attributes are present here as
well as specialized objects such as enrichments and observables.

https://schema.ocsf.io/1.0.0/classes/base_event?extensions=

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 6

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Categories, Event Classes, and Extensions (cont.)

The Base Event is extended by the Category Event, which further
defines specific enumerations or provides specific Captions and
Descriptions atop them.

The Category Events are a “base event” in their own right and
group like-attributes and their enumerations for all Events in
a Category.

For instance the simple Network event class (not viewable in
the OCSF Server) extends the Base Event and populates more
objects that all Event Classes within the Category share.

Finally, the specific Event Class itself can also add additional
attributes and objects, as well as further define captions,
descriptions, and enumerations atop the Category Event that
it is extended from.

The cascading extensions are not noticeable outside of the raw
JSON files that define the schema; they are transparent when
viewing the OCSF schema documentation (via the OCSF Server).

This is why the OCSF schema documentation is such a great
resource for producing mappings into OCSF, as using the raw
JSON will often provide an incomplete picture of the full depth
of any given part of the Schema.

Note: For hosting your own local version of the OCSF Server
to explore the OCSF schema documentation, read more at the
official GitHub here.

The extensions are also used in objects, such as the
Network Endpoint object being extended by both the
Destination Endpoint and Source Endpoint objects, or the
fact that the Owner object within Device is just a User object
underneath the covers. For further information on how this
works, refer to references to the OCSF “dictionary” in the
Understanding OCSF readme.

https://github.com/ocsf/ocsf-schema/blob/main/events/network/network.json
https://github.com/ocsf/ocsf-server
https://schema.ocsf.io/1.3.0/objects/network_endpoint?extensions=
https://schema.ocsf.io/1.3.0/objects/device?extensions=
https://schema.ocsf.io/1.3.0/objects/user?extensions=
https://github.com/ocsf/ocsf-docs/blob/main/overview/understanding-ocsf.pdf

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 7

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

OCSF Has It All, but
Do You Need All of It?
The most important determination
for how you map is the intended
downstream usage, not completeness
of mapping.

While completeness is commendable, if
the data will not be used with analytics,
human analysts, visualizations, machine
learning, or artificial intelligence (AI)
systems, it does not make sense to fully
map at every occasion.

For instance, the Observables object acts
as a lookup table for various important
attributes that may appear multiple
times within an Event, such as recording
different hashes of a malware sample. If
you do not intend to query or visualize
Observables, or if you do not have
more than one attribute that is also an
Observable, you do not need to map it.

Within the metaschema there are
definitions of required, recommended,
and optional fields that can honestly
be ignored.

It pains me to admit this as a serial
contributor, consumer, and producer
of OCSF data, but the truth is unless
mapping the data for your processes
and playbooks is required, you should
consider “under-mapping” exactly what
you require.

The obvious caveat (again as an OCSF
contributor and producer) is if you
are working within the context of an
OCSF system that will perform full
validation: follow the constraints and
requirements!

However, that doesn’t really answer the
question of “what should I map?” nor
“how do I map something?”.

In the next sections, you will learn what
should be included in any mapping—
regardless of what it is.

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 8

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Minimum Necessary Mapping
If you take nothing else away from this section it is that you should have a constant feedback loop with your team. Constantly partner
with your threat hunters, detection engineering teams, data engineers and scientists, and anyone else consuming the OCSF data.
Find out what important fields or transformations they’re expecting to be in the final mapped event. Templatize and continuously test
changes and decide as a team.

In the OCSF metaschema—the schema rules about the schema
framework—every single attribute has as Requirement: either
Optional, Recommended, or Required. These Requirement values
are set by the contributors of the specific attributes or objects
within the wider schema and are built upon by Constraints.

Constraints are defined at the object or Event Class level and
mandate that certain attributes (or other nested objects)
are mapped. For instance, the Authentication event class
has Constraints to ensure that either Service or Destination
Endpoint are defined.

Requirements and Constraints are great—contributors typically
put these in to serve as helpful hints in the spirit of “minimum
necessary”. That said, you can safely ignore these constraints
and requirements. Unless you are performing incredibly strict
mapping validation beyond just ensuring that the schema
attributes match, you are safe with skipping attributes that are
defined as “Required.”

“Okay, I’ll take your word for it, where should I start?”
 - You (probably)

Glad you asked! There is great variability based on the ultimate
downstream use cases(s) for the Event, as there is for any given
Event, but there are attributes and objects you should always
consider mapping.

https://schema.ocsf.io/1.3.0/classes/authentication?extensions=
https://schema.ocsf.io/1.3.0/objects/service?extensions=
https://schema.ocsf.io/1.3.0/objects/network_endpoint?extensions=
https://schema.ocsf.io/1.3.0/objects/network_endpoint?extensions=

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 9

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Key Attributes
Firstly are the main attributes within the “base event”, the top-level attributes for an Event Class itself, such as HTTP Activity. The following list is
not exhaustive nor should it be taken as mandatory, there are times where you may not even have the data to map directly into these attributes.

Attribute Description

Timestamp
(time)

Arguably the most important attribute, this allows you to time order and conduct basic “eyeball analytics” across your Events.
There are certain cases where you may need to use other “specialized” timestamps as well if you create this timestamp for
Events such as Device Inventory Information or OSINT Inventory Information where an upstream platform doesn’t provide a
“last seen” date.

Category ID
(category_id)

This maps the Category and must always be mapped. It’s helpful for analytics, searching, and visualizing across the
entire Category.

Activity ID
(activity_id)

The normalized “thing that happened”. This is an enumeration with integers corresponding to a defined activity. Often Activity
ID enumerations are shared across Events in the same Category: such as Closed Findings across Detections, Compliance, and
Vulnerability Findings.

Class ID
(class_id)

This is the actual ID for the Event Class in question. Obviously you must always map them, especially if you’re producing or
mapping more than one Event Class

Severity ID
(severity_id)

The normalized severity is the same across all Events (as of now), this one is a bit controversial at times as for a majority of events
you’ll likely normalize this to 1 (Informational) or 99 (Other) for more “steady state” types of Events such as Process Activity or File
Hosting Activity.

Status ID
(status_id)

Sometimes this overlaps with the Activity ID, but depending on the Event Class it can provide a sort key at a higher order than
Activity ID (e.g., Success vs. Failure) or more specific than Activity ID (e.g., In Progress, Resolved, Suppressed).

Status Detail
(status_detail)

You can normalize the Status of any given Event with Status ID and you can preserve the raw errors, state changes, overall status,
or otherwise in Status Detail.

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 10

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Key Attributes (cont.)

Attribute Description

Message
(message)

A human-readable label, description, title, or easy to view piece of information about the Event. This can be a
process name, a command line, the unnormalized activity, or an alert or finding title.

Type UID
(type_uid)

A Class-specific Activity ID, this is calculated by adding the Activity ID to the Class ID and multiplying it by 1000.
This is helpful when you only want to get a specific Activity for a specific Class that has overlap in a Category,
such as Detection Finding: Create (200401) instead of filtering across two or more attributes.

Metadata UID
(metadata.uid)

This is the UID attribute in the Metadata object. This is essentially the deduplication key or GUID for any given
Event. This can be the trace ID, generated GUID, a UUID5, or proper finding ID.

Metadata Correlation UID
(metadata.correlation_uid):

Similar to the Metadata UID, this value can be mapped 1:1 directly from downstream sources such as M365 logs,
or you can map a common data point from similar normalized elements—such as a User ID, a SID, a hostname, or
otherwise.

Product Name
(metadata.product.name)

The name of the product that produces the downstream raw Event. This can be helpful to query against and
quickly see source contributors such as filtering on Crowdstrike Falcon and seeing the various Detection
Findings, Vulnerability Findings, Incident Findings, and Device Inventory Information events coming from various
Falcon endpoints such as Detects or Hosts.

Vendor Name
(metadata.product.vendor_name)

The name of the vendor of the product that produces the downstream raw Event. This is another higher order
of sorting and filtering especially if you have a suite of tools such as Microsoft Intune, Microsoft Defender for
Endpoint, and Microsoft EntraID to quickly filter on contributing findings.

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 11

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Mapping With Nuance
Overall, there are not a lot of attributes that
should (or must) be normalized in OCSF. Of
course, there is some more nuance to go
over. Specific Categories and/or specific
Event Classes may have additional “base
event” attributes—typically integer based
enumerations—such as Confidence ID
(confidence_id) or Risk Level ID (risk_
level_id) within the Detection Finding
event class.

There are other variations, such as Auth
Protocol ID (auth_protocol_id), within
the Authentication event class and many
other specific attributes—always check
the official schema to check available
attributes. Again, work backwards from
what data points will be required or
otherwise useful to hunting threats or
responding to incidents, and then work
within the individual datasets
for normalization.

Outside of the Base Event level, every Event
Class is made up of a collection of one or
more objects, which, as you learned earlier,
is a collection of attributes that align to a
specific “thing”.

For instance, the Authentication event
class contains several objects such as
Source and Destination Endpoints (both
extend the Network Endpoint object)
which contain attributes about the source
or destination of an authentication,
respectively (and obviously). Your logs may
not contain this sort of detail.

Again, OCSF is a Framework of many
schemas to normalize and standardize data
sets into. Just because the object is there—
regardless of what the Constraints specify—
it doesn’t matter if:

•	 It’s not of any use to you.
•	 You don’t have data to normalize into

the attributes, regardless.

This is a trap I have fallen into many times
myself: going overboard with mapping
into OCSF when I was not making any
use of the attributes and thus ended up
with multiple duplicate values normalized
into similar attributes all across the given
Event Class.

This is another reminder to work backwards
from pain and jobs to be done, and to
have a governance layer and source code
control on your data artifacts so that there
is not any ambiguity or confusion.

Even if you “over-mapped”, there is always
a chance for confusion if your data pipelines
and products are not well documented.

All that said, there are absolutely teams out
there who want to map as much as possible
because they use all of the attributes and
mapped data for a variety of reasons. On
the opposite end of normalization, there
exists a handful of objects that can be used
for more or less “custom” mapping or for
more flexible searching.

https://schema.ocsf.io/1.3.0/classes/detection_finding?extensions=
https://schema.ocsf.io/1.3.0/classes/authentication?extensions=
https://schema.ocsf.io/1.3.0/dictionary?extensions=

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 12

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Mapmaxxing
Enrichment Object
First, the Enrichments (enrichments)
object is an array type that contains
downstream-specific context data or
post-hoc enrichments such as adding
geolocations, reputation assessment,
and other additions into the downstream
event before normalization into a given
Event Class.

The attributes within Enrichments are
very generic, allowing for flexibility of
enrichment but without much specificity.
Of note, the Enrichments object contains
the Data (data) attribute which is a
proper JSON datatype within the schema.

Given that this object is an array type,
special care needs to be taken for
business intelligence applications and
query interfaces such as using an object-
oriented programming language, a
scripting language, or SQL syntaxes.

You may incur additional performance
penalties attempting to loop through
and unnest values inside of an array
such as using CROSS JOIN and
UNNEST together.

Certain SQL dialects may not have access
to those keywords or operators, and
certain business intelligence tools may
not support arrays at all with manual
preprocessing outside of the application.

Unmapped Object
Next, the Unmapped (unmapped) object
does not contain any attributes at all.
It is meant to be used as a Map data
type which is a complex data type that
contains key value pairs where the value
can be a scalar (string, integer, etc.) or
can be an array or another map.

The intended usage is meant to preserve
the raw, downstream key name as literal
as possible. This is not the same as a
“custom data” object, it is meant to hold
key value pairs that you want to preserve
but cannot otherwise be normalized.

Using the Unmapped object requires
well documented data governance; if
you are using a data warehouse or other
SQL interface, each dialect has nuances
around processing nested key value pairs
in data types such as Maps.

https://schema.ocsf.io/1.3.0/objects/enrichment?extensions=
https://docs.aws.amazon.com/athena/latest/ug/flattening-arrays.html
https://www.w3schools.com/mysql/mysql_join_cross.asp
https://docs.starrocks.io/docs/sql-reference/sql-functions/array-functions/unnest/
https://docs.starrocks.io/docs/sql-reference/data-types/semi_structured/Map/

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 13

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Observerables Object
Last, but certainly not least, there
are the Observables (observables).
Observables are an array of Observable
objects which contain a type (e.g., CVE
ID, IP Address, User Agent), the value,
and location within the schema it is
referenced using dot-notation.

For example, your IP Address Observable
that references the Device IP will have
a “name” of “device.ip”. If there are
multiple types of observable attributes
such as multiple IP addresses, or if you
placed values into enrichments or
unmapped, then Observables become
more of a boon than a hassle.

There are drawbacks to Observables.
A little over 2 dozen (as of OCSF 1.4.0-
dev) scalar values are covered, and
some are incredibly ambiguous or
broadly applicable such as the Resource
UID observable.

Additionally, the same performance
and parsing challenges faced
with Enrichments will be faced with
Observables as it is also an
array-typed object.

If I have not repeated myself enough—
whether you are going with a minimum
necessary approach, or being very
liberal with your mapping, ensure that a
continuous improvement and feedback
loop is present.

Always work with your consumers:
be they from IT Observability, SRE,
DevOps, Detection Engineering, Security
Operations, Threat Hunting teams, or
otherwise. Understand what data points
are important, which are nice to have,
which are unnecessary, and how that fits
within the OCSF.

Always attempt to map the minimum
necessary attributes listed in this
section to have a predictable base of
data to work from, especially when
working with massive amounts of
aggregated OCSF data. If you do need to
use “looser” objects such as Enrichments,
Observables, and/or Unmapped, ensure
that the mappings and intended use
cases are well defined and documented.

Lastly, for Event Class-specific objects,
ensure you’re not overmapping or
creating confusing scenarios when many
similar objects are mapped out at the
same time.

https://schema.ocsf.io/1.3.0/objects/observable

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 14

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Wrap Up
In this paper on mapping data into OCSF you learned all about the theory of
mapping. You learned an overview of OCSF and how the various concepts
such as attributes, objects, and Events tie together and how to interpret them.

You also learned about the importance of continuous improvement, data
governance, and feedback loops to ensure that your mapping efforts are wholly
beneficial to consumers.

Finally, you learned about minimum necessary mappings into OCSF and how to
pick and choose specific or broader objects and attributes to utilize.

As mentioned, we’ve focused on the theory of mapping and a little bit about the
“why” we map into OCSF. If you’re interested in building upon this knowledge,
check out our blog on Mapping Amazon Application Load Balancer Access Logs
to the Open Cybersecurity Schema Framework (OCSF).

You may also be interested in the Query Absolute Beginner’s Guide to OCSF
and Security Data Lakes on Amazon S3, both of which relate to OCSF mapping.

In the event you do not want to worry about mapping, data governance,
Extraction, Transformation, and Loading (ETL), or any other data subject ever
again: check out Query Federated Search. Our entire data model is based
upon OCSF.

We map popular security-relevant data sources into OCSF and also allow you
to express your search using OCSF terms. We translate all queries for you into
target syntax or dialect, be it SQL, KQL, SPL, or otherwise, and we do not ever
store nor replicate your data.

To book a call to explore if we are a fit, go here.

Until next time. Stay Dangerous.

https://www.query.ai/resources/blogs/mapping-amazon-application-load-balancer-access-logs-to-the-open-cybersecurity-schema-framework-ocsf/
https://www.query.ai/resources/blogs/mapping-amazon-application-load-balancer-access-logs-to-the-open-cybersecurity-schema-framework-ocsf/
https://www.query.ai/resources/blogs/query-absolute-beginners-guide-to-ocsf/
https://www.query.ai/resources/blogs/have-a-security-data-lake-on-amazon-s3-read-this-blog/
https://www.query.ai/product/
https://www.query.ai/book-a-demo/

©2025 Query.AI, Inc. • All rights reserved • QWP-06 • 15

Definitive Guide to Open Cybersecurity Schema Framework (OCSF) Mapping

Query: Making Open Federated
Search for Security a Reality
Query aims to deliver visibility into all relevant data for security
teams. We provide a federated search solution that allows
operators to access data at the source and in your data lakes,
creating opportunities for more nimble and cost efficient data
storage architectures.

Our customers are using Query to expand visibility for security
investigations, threat hunting, and incident response. They are
drastically reducing the time and complexity of repetitive search
tasks and improving outcomes for investigations. Expose your
security data with Query.

Ready to expedite your
security investigations with
open federated search for security?
For more information visit: www.query.ai

https://www.query.ai/product

