
©2025 Query.AI, Inc. • All rights reserved • QWP-07

Mapping Amazon Application Load
Balancer Access Logs to the Open
Cybersecurity Schema Framework (OCSF)
Contributed by: Jonathan Rau & Aurora Starita

©2025 Query.AI, Inc. • All rights reserved • QWP-07

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

Introduction to OCSF ...

What Is an AWS Application Load Balancer? ..

Challenges in Mapping ALB Logs to OCSF ...

Prerequisites ..

Anatomy of an ALB Access Log ..

Processing ALB Access Logs Overview ...

ALB Access Log ETL ..

Analyze ALB Access Logs With DuckDB ...

Wrap Up ..

Table of Contents

1

2

4

5

6

8

10

13

16

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 1

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

Introduction to OCSF

In this whitepaper, we’ll focus on

mapping Amazon Application Load

Balancer (ALB) access logs to the Open

Cybersecurity Schema Framework

(OCSF) format.

OCSF is a standardized schema designed

to help organizations normalize and

correlate data from different sources,

making it easier to analyze and act

on cybersecurity events. For more

information on using OCSF see our

Definitive Guide to OCSF Mapping and

our Absolute Beginner’s Guide to OCSF.

Mapping ALB access logs to OCSF—

along with other OCSF-normalized

log sources—will help to simplify

investigations, incident response (IR),

threat hunting, security analytics, and

other security- and observability-

relevant use cases.

This holds true due to the fact that

OCSF is a strongly-typed, hierarchical,

and actively maintained schema that

provides normalized and standardized

locations to map and transform all

security data—Amazon ALB access logs

in this case.

OCSF is also well optimized for storage

in columnar data formats such as Apache

Parquet for ingestion into your data

warehouses, data lakes, open lakehouses,

and even your Security Information &

Event Management (SIEM) solutions such

as Splunk, or SIEMs built atop Amazon

OpenSearch Service.

Making a mapped schema is an attractive

option not just for cost-conscious

organizations, but for those who want

to take control of their data. Which we

think you should.

https://www.query.ai/resources/blogs/definitive-guide-to-open-cybersecurity-schema-framework-ocsf-mapping/
https://www.query.ai/resources/blogs/query-absolute-beginners-guide-to-ocsf/

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 2

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

What Is an AWS Application Load Balancer?

AWS ALB is a managed service by AWS

that distributes incoming application

traffic across multiple targets, such as

EC2 instances, containers, or Lambda

functions.

ALB is part of the larger Amazon Elastic

Load Balancing (ELBv2) service that

includes ALB for OSI Layer 7 (HTTP/

HTTPS/Websockets) traffic and Network

Load Balancer (NLB) for OSI Layer 4 (TCP/

UDP/TLS) traffic.

Each ALB has one or more listeners

which map to a protocol and port (e.g.,

HTTP on port 8080, or HTTPS on port

443) which use rules to route requests

to registered target groups which is a

collection of one or more targets.

Targets include Amazon EC2 instances

and AWS Lambda functions, among

others. For more information on ALB

refer to the Application Load Balancer

section of the Amazon Elastic Load

Balancing documentation.

ALB also provides the ability to apply

Distributed Denial of Service (DDOS)

protection to targets behind it via AWS

Shield Advanced, even more effectively

when used in conjunction with AWS Web

Application Firewall (AWS WAFv2).

There are controls to drop invalid HTTP

headers as well as protect against HTTP

desync attacks, and the rules engine

allows for finer grained routing and

health checks.

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 3

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

Most important for our (security-relevant) purposes: it provides

detailed access logs that capture information about requests and

their outcomes. These access logs are a good source of data for

performance monitoring and security analysis.

Using a service such as Amazon Security Lake can help centralize

AWS WAFv2 access logs and Amazon Virtual Private Cloud

(VPC) flow logs, where this solution will help enable you to

operationalize around the ALB access logs as well.

ALB access logs provide:

• The context on the source IP and port

• The specific resource your ALB routed them to

• Outcomes such as if the request was allowed

• Payload times and sizes

Plus ALB-specific data such as:

• Which Server Name Indicator (SNI) and Amazon Certificate

Manager (ACM) X.509 certificates were used

• HTTP Desync protection classification actions and reasons

On its own, the data may not be too exciting. However, when

used in conjunction with WAF, VPC Flow Logs, and (optionally)

AWS Global Accelerator and/or Amazon CloudFront access

logs,it provides the “full story” of connectivity–and potential

malicious activity–in your AWS network stack.

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 4

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

Challenges in Mapping ALB Logs to OCSF

Mapping ALB access logs to OCSF isn’t without its difficulties:

• Log Format: ALB access logs have

a space-separated log format that

also uses quotations around certain

elements. This makes parsing via simple

delimiting impossible, and even makes

using regular expressions (regex)

complicated.

• Bucket Policies by Region: Log files

are stored in Amazon S3 buckets with

each legacy AWS Regional log delivery

service (any region created before

August 2021) requiring a specific Bucket

Policy and for the Bucket to be created

in that specific region. If you are multi-

regional, you require one bucket per

Account wherever ALBs are deployed,

each with its own Bucket Policy

allowing the specific AWS account of

the managed Log Delivery service.

• Centralization Difficulties: While

this paper focuses on mapping and

normalizing logs, we are not addressing

log centralization. Centralizing logs

across multiple regions and accounts

requires additional tooling and policies

that go beyond the scope of this guide.

So it’s a challenge but so what? Are you

afraid of a little challenge? We’re not.

This paper aims to provide a practical guide

for organizations looking to extract more

value from their ALB logs by mapping them

to OCSF and to get started, we’ll stick with

single buckets.

In this paper, you will learn the anatomy of

an ALB log and common processing pitfalls

within them. You will learn the overall

mechanism for Extraction, Transformation,

and Loading (ETL) of ALB access logs

into OCSF format, and do it yourself with

Python. Finally, you will learn how to

analyze basic data within the ALB access

logs using DuckDB.

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 5

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

Prerequisites

For the best experience, download VSCode and ensure you have

at least Python 3.11 installed on your machine along with your

preferred package manager such as Pip, Poetry or otherwise.

VSCode handles setting up virtual environments as well as

running scripts as notebooks.

When using the script for this paper, VSCode will prompt you to

install jupyter and other dependencies. You can run any script

as a notebook by adding the following characters above your

various code “blocks”: # %%.

To install DuckDB, refer to the official DuckDB Installation section

of their documentation. The simplest way to install it is on a

MacOS using homebrew with: brew install duckdb.

After DuckDB is installed, you will need to install several Python

libraries using your preferred package manager such as pip or

otherwise. Our code repo contains a requirements.txt file here

that lists them all.

If you need it, take our crash course on SQL and DuckDB and its

applicability to Security Operations teams.

Finally, you can download the script to process ALB logs and

the notebook-ified DuckDB script from our GitHub repository.

The rest of the paper will assume you have the code and the

ability to run it, including AWS IAM credentials that allow you to

download objects from an S3 bucket in your region.

https://duckdb.org/docs/installation/
https://www.query.ai/resources/blogs/introductory-sql-for-secops-exploratory-data-analysis-with-duckdb/
https://www.query.ai/resources/blogs/introductory-sql-for-secops-exploratory-data-analysis-with-duckdb/
https://github.com/query-ai/blog-code/tree/main/samples/alb_ocsf_mapping

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 6

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

Anatomy of an ALB Access Log

ALB access logs are space-delimited

logs—similar to Apache Common Event

Format (CEF) and AWS VPC flow logs—

with specialized log fields escaped with

double quotes. For a full description of

every possible log field, see the Syntax

subsection of the Access logs for your

Application Load Balancer section of the

Elastic Load Balancing documentation.

Double quotes are used to encapsulate

fields that naturally have white space

in them such as the request field which

contains the HTTP Method (e.g., GET or

POST), the URL of the target, and the

HTTP Version (e.g., HTTP/1.0 or HTTP/2.0).

For example, consider this request field

from one of our honeypots: “GET http://

mock-lambda-external-alb-redacted.

us-east-2.elb.amazonaws.com:80/

HTTP/1.0”

Likewise the user-agent field is

also encapsulated in double quotes

“vodafone/1.0/V802SE/SEJ001 Browser/

SEMC-Browser/4.1” as are other fields. As

mentioned before, this makes parsing the

ALB logs with easy mechanisms such as

splitting them by white space difficult.

Writing a broadly applicable regular

expression is also difficult due to the fact

that there can be missing information

within the logs, or places where there are

comma delimited fields within double

quoted fields.

For instance, anytime there is a missing

entry for a log field, it is replaced with

a single dash (–). Likewise, there are

fields such as actions_executed which

can contain multiple entries such as

”waf,forward” which denote that the

specific connection was inspected by a

WAF before being sent to the target group

with the forward action. These actions can

differ based on your rules.

There are some regex patterns online that

will work in 90% of cases, and if the final

destination was a SIEM or another log

management system where rich text search

could be used against indexed data this

parsing inconsistency may not be an issue.

However, for storing this data as structured

information with your open security data

lakehouse or within another data lake, a

higher level of due care is required to avoid

data quality issues.

http 2024-11-16T23:59:49.445081Z app/mock-lambda-external-alb/

redacted 5.8.11.202:60000 – 0.012 0.034 0.000 502 – 96 272 “GET http://

mock-lambda-external-alb-redacted.us-east-2.elb.amazonaws.com:80/

HTTP/1.0” “vodafone/1.0/V802SE/SEJ001 Browser/SEMC-Browser/4.1” – –

arn:aws:elasticloadbalancing:us-east-2:redacted123:targetgroup/mock-lambda-

tg/123redactedlol123 “Root=1-673931f5-3c6b885a0d99945f6cdc880d” “-” “-” 0

2024-11-16T23:59:49.399000Z “waf,forward” “-” “LambdaInvalidResponse” “-”

“-” “-” “-” TID_5c70dac1416ce84c9b5eee0d785cf295n

An example of a real world HTTP log from one of our honeypots will look like this. (HTTPS logs are inherently more detailed.)

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html#access-log-entry-syntax
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html#access-log-entry-syntax
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html#access-log-entry-syntax

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 7

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

For our purposes Grok–which is

built atop regex at a higher level of

abstraction–is a better tool as, though it

may be less flexible than regex overall,

it’s easier to work with and optimized for

the exact kind of pattern matching we’re

looking to do. You will see how the Grok

pattern is written in later sections of

this paper.

Furthermore, there are concatenated

fields within the access log that contain

important data. For instance, both the

client:port and target:port fields combine

the IP address and the port with a colon

(:) delimiter. There are also cases where

target:port is missing due to the type

of downstream target, such as an AWS

Lambda function.

There are also cases where further

processing is required to pull out

other pertinent information that is not

otherwise purposely concatenated such

as the client:port field. In this case, the

target_group_arn field contains the

Amazon Resource Name (ARN) of the

target group the traffic was routed to, or

was intended to be routed to.

The ARN also contains the AWS account

ID and the AWS region name which is

not otherwise present in the log. This

value can be processed to extract those

values, it is incredibly important for

attribution and ownership, especially

in very large multi-account and multi-

region AWS environments.

There are duplicate fields within the

ALB access log, such as target:port_list,

which was intended to hold the IP:port

pairs for target groups with several

targets with mixed IP addresses, such

as Amazon EC2 instances. However, this

field is a duplicate of the target:port

field, and is unnecessary to retain.

Likewise, there are very rarely used

fields such as classification and

classification_reason, which contain

details about HTTP desync attacks

according to the RFC 7230 standard.

If HTTP desync attack prevention is

important to your application security

efforts, or to your threat model(s), you

should consider retaining these but

otherwise you can consider dropping

their inclusion altogether.

In the next section, you will learn about

how to effectively process these access

logs and transform them into an OCSF-

formatted Parquet file to ultimately use

for analysis with DuckDB or ingest into

your open security data lakehouse.

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 8

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

Processing ALB Access Logs Overview

Processing and packaging (not in the sausage or SBOM way), the ALB Access Logs into

usable OCSF data is a multi-step process. This is also known as Extraction, Transformation,

and Loading (ETL) data, and is a foundational SecDataOps skillset to know. The most

important prerequisite being that you have ALBs with live traffic that are publishing logs

into an S3 bucket, and the bucket can receive the logs.

Referring to the below diagram, the high-level steps for processing raw ALB access logs

into proper OCSF formatted logs are as follows.

1. The AWS-managed Log Delivery service for

ALB delivers access logs to designated S3

bucket(s) they are given permission to in a

variable time frame.

2. The script downloads the raw log files—

which are GZIP’ed text files—from a specific

bucket(s) or certain prefixes within the

bucket(s).

3. Log files have their GZIP compression

removed (“gunzipped”) and the raw log is

parsed with a Grok pattern to convert the

text based log into a Python dictionary.

4. Incomplete or corrupted log entries that

are missing key details are removed from

the log.

5. The Target Group ARN and Request fields

are processed to extract out specific

information such as AWS account IDs,

AWS region names, URL components, HTTP

methods, and HTTP versions.

6. After preprocessing, the rest of the data is

transformed into the OCSF HTTP Activity

event class, written to a Parquet file from

a Pandas DataFrame, and can be further

uploaded or processed. (In our case we will

use DuckDB for analysis).

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 9

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

The Python script process_alb.py does all of the heavy lifting

on your behalf, however, it will not attempt to rightsize the

amount of data consumed based on your system specifications. If

you point the script at a bucket containing several 100 GBs or TBs

of ALB access logs, it will not work.

Please consider adapting this script to use PySpark and run it on

Databricks or Amazon EMR Serverless Workspaces if you require

a large amount of data to be ETL’ed at once.

For the best performance, provide a specific path to a specific

month, or a specific day. For instance, consider this example

path which only retrieves a single day’s worth of logs from a

specific account and region: AWSLogs/12accountexample12/

elasticloadbalancing/us-east-2/2025/01/17

In the next section you will learn about the pertinent parts of the

script, or you can optionally skip to the DuckDB Analysis section

if you do not care about the inner workings of our (janky) script!

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 10

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

ALB Access Log ETL

The only required steps, beyond installing the

prerequisite software dependencies, is to add

values for the BUCKET_NAME and PATH_NAME

constants. For the best performance, as

previously mentioned, use a path that is specific

down to the day.

This information is used by the openLogFile

method which in turn uses the ListObjectsV2

API to pull out all individual objects (log files)

within that prefix, if there are any there. If

there are, the files are locally downloaded

and gunzipped with each log line sent to the

grokProcessLogs function.

From there, all of the preprocessing and

transformation is carried out by a series of

additional chained methods. This is all done

serially. To make it faster the script could be

further modified to use generators and multi-

processing to parallelize multiple preprocessing

steps at once.

The grokProcessLogs method

applies the Grok filter which is instantiated in

global space at the beginning of the script.

BUCKET_NAME = “my-alb-access-logs”

PATH_NAME = “AWSLogs/123456789012/elasticloadbalancing/us-

east-2/2024/01/17”

GROK = Grok(

‘%{DATA:type}\s+%{TIMESTAMP_ISO8601:time}\s+%{DATA:elb}\

s+%{DATA:client}\s+%{DATA:target}\s+%{BASE10NUM:request_processing_

time}\s+%{DATA:target_processing_time}\s+%{BASE10NUM:response_

processing_time}\s+%{BASE10NUM:elb_status_code}\s+%{DATA:target_

status_code}\s+%{BASE10NUM:received_bytes}\s+%{BASE10NUM:sent_bytes}\

s+\”%{DATA:request}\”\s+\”%{DATA:user_agent}\”\s+%{DATA:ssl_cipher}\

s+%{DATA:ssl_protocol}\s+%{DATA:target_group_arn}\s+\”%{DATA:trace_

id}\”\s+\”%{DATA:domain_name}\”\s+\”%{DATA:chosen_cert_arn}\”\

s+%{DATA:matched_rule_priority}\s+%{TIMESTAMP_ISO8601:request_

creation_time}\s+\”%{DATA:actions_executed}\”\s+\”%{DATA:redirect_

url}\”\s+\”%{DATA:error_reason}\”\s+\”%{DATA:target_list}\”\

s+\”%{DATA:target_status_code_list}\”\s+\”%{DATA:classification}\”\

s+\”%{DATA:classification_reason}\”’

)

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 11

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

Applying the Grok pattern will convert

the raw log line into a Python dictionary

without further processing. This allows

us to control the processing but

providing key names for the

corresponding log field value.

The dictionary is immediately checked

to ensure that it is not incomplete or

corrupt by ensuring a target_group_arn

field is present. This method is also

where the first preprocessing occurs by

retrieving the AWS region and account

data from the target_group_arn field.

Other processing happens here as

well. The “base event” attributes

within the HTTP Activity event

class are mapped within the

httpActivityBaseEventMapping

method. The dst_endpoint OCSF

object–of the Network Endpoint

object type–is processed using the

elbTargetProcessor method.

def grokProcessLogs(rawlog: str) -> dict | None:

 “””

 Uses PyGrok to transform ALB access log pattern into Python dictionary and

further OCSF conversion

 “””

 preProcessedLog = GROK.match(rawlog)

 # ALB access log docs don’t account for this, but if the TG ARN is empty it is

likely a log delivery error and should be ignored

 try:

 if preProcessedLog[“target_group_arn”] is not None and

preProcessedLog[“target_group_arn”] != “-”:

 try:

 tgSplitter = preProcessedLog[“target_group_arn”].split(“:”)

 preProcessedLog[“region”] = tgSplitter[3]

 preProcessedLog[“account”] = str(tgSplitter[4])

 baseEventMapping =

httpActivityBaseEventMapping(preProcessedLog[“request”].split(“ “)[0])

 dstEndpoint = elbTargetProcessor(preProcessedLog[“target”])

 ocsf = httpActivityOcsfBuilder(rawlog, preProcessedLog,

baseEventMapping, dstEndpoint)

 return ocsf

 except IndexError:

 pass

 except TypeError:

 return None

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 12

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

Finally, the final OCSF HTTP Activity

event class is assembled (with

other helper functions) in the

httpActivityOcsfBuilder method.

In the next section you will use DuckDB

to run very basic SQL queries against

the Parquet file to learn how to conduct

simple investigations or exploratory data

analysis on ALB logs.

{

 “activity_id”: 3,

 “activity_name”: “Get”,

 “category_name”: “Network Activity”,

 “category_uid”: 4,

 “class_name”: “HTTP Activity”,

 “class_uid”: 4002,

 “severity_id”: 1,

 “severity”: “Informational”,

 “status”: “Failure”,

 “status_code”: “502”,

 “status_detail”: “LambdaInvalidResponse”,

 “status_id”: 2,

 “type_uid”: 400203,

 “type_name”: “HTTP Activity: Get”,

 “message”: “ALB executed the following actions: waf,forward”,

 “time”: “2024-11-16 23:59:49.000”,

 “start_time”: “2024-11-16 23:59:49.000”,

 “duration”: 0.046,

 “raw_data”: “http 2024-11-16T23:59:49.445081Z app/mock-lambda-external-

alb/72b69973b95c6ccf 5.8.11.202:60000 - 0.012 0.034 0.000 502 - 96 272

\”GET http://mock-lambda-external-alb-12345678.us-east-2.elb.amazonaws.

com:80/ HTTP/1.0\” \”Vodafone/1.0/V802SE/SEJ001 Browser/SEMC-Browser/4.1\” - -

arn:aws:elasticloadbalancing:us-east-2:123456789012:targetgroup/mock-lambda-

tg/123redactedlol123 \”Root=1-673931f5-3c6b885a0d99945f6cdc880d\” \”-\” \”-\” 0

2024-11-16T23:59:49.399000Z \”waf,forward\” \”-\” \”LambdaInvalidResponse\” \”-\” \”-\”

\”-\” \”-\” TID_5c70dac1416ce84c9b5eee0d785cf295\n”,

...view the full code block here

https://www.query.ai/resources/blogs/mapping-amazon-application-load-balancer-access-logs-to-the-open-cybersecurity-schema-framework-ocsf/#:~:text=When%20every%20log,raw_data%20OCSF%20Attribute.

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 13

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

Analyze ALB Access Logs With DuckDB

In this section you will learn a handful

of SQL queries to run against your HTTP

Activity OCSF-formatted ALB Access

Logs. For a more thorough understanding

of DuckDB, refer to the Introduction to

DuckDB for SecOps blog we linked at the

beginning of this paper.

For a much better security-relevant

analysis, you should consider creating

(Materialized) Views or using JOINS to put

together related data sources. For instance,

you can create a View in AWS Glue against

VPC Flow Logs, WAF Logs, and ALB Access

Logs added as a customer source to

Amazon Security Lake to analyze all of the

relevant parts of the logs at once.

This can be helpful for troubleshooting

network connectivity issues as well

as post-blast analysis if SQL Injection

or Cross-Site Scripting attack evaded

your WAF defenses and routed to a

target downstream.

Use the duckdb_alb_ocsf.py notebook-

ized script within the VSCode Jupyter

plugin, and change the LOCAL_PARQUET

constant to your Parquet file if you

changed the name of that in the

previous script.

If you’re unfamiliar with the dataset, the

first action you can take is determining the

total amount of rows using the COUNT(*)

function within SQL. This will print out how

many rows are in the normalized dataset.

Furthermore, the most perfunctory step

to take in exploratory data analysis (EDA)

besides getting a row count is taking a

sampling of logs. In this case, the column

limit of DuckDB is an issue, given the

hierarchical nature of OCSF.

Use the LIMIT clause within SQL to set

the maximum amount of rows returned to

avoid overwhelming yourself.

Using SELECT DISTINCT along with

specifying certain columns (OCSF

attributes) is helpful to get unique

instances of certain data points, such

as both the source and destination IP

addresses. You can use dot-notation

to retrieve deeply nested data such as

src_endpoint.ip or http_rquest.url.

query_string.

duckdb.sql(

 f”””

 SELECT COUNT(*) FROM read_parquet(‘{LOCAL_

PARQUET}’)

 “””

).show()

duckdb.sql(

 f”””

 SELECT * FROM read_parquet(‘{LOCAL_PARQUET}’)

 LIMIT 30

 “””

).show()

duckdb.sql(

 f”””

 SELECT DISTINCT

 src_endpoint.ip,

 dst_endpoint.uid

 FROM read_parquet(‘{LOCAL_PARQUET}’)

 LIMIT 50

 “””

).show()

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 14

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

Use summary aggregations to get a total count of HTTP Methods

along with the specific HTTP Codes and Methods. A summary

aggregation is created by using the COUNT() operator along with

specifying other fields of value for your aggregation.

You then reference those same fields (directly, or via alias) using

the GROUP BY statement. You can further order these with

the ORDER BY function, in this case the aggregation method is

returned in descending order by the total number

of methods.

duckdb.sql(

 f”””

 SELECT

 COUNT(activity_name) AS total_methods,

 status_code,

 activity_name as http_method

 FROM read_parquet(‘{LOCAL_PARQUET}’)

 GROUP BY http_method, status_code

 ORDER BY total_methods DESC

 “””

).show()

total_methods

int64

status_code

varchar

http_method

varchar

386 502 Get

275 403 Get

62 502 Post

13 403 Head

6 502 Options

3 460 Head

2 413 Get

1 200 Post

1 400 Post

1 200 Get

As an example, locally ran against my own sample data returned this resulting table.

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 15

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

In the event there is a HTTP status code of interest, you can pull

out specific source and destination information for it. In this case,

retrieving the source and destination IP addresses and ports,

alongside the user agent, status detail, and message from the

OCSF data.

You can use predicates written against specific parts of the

normalized schema to find areas where there is not a null query

in the URL.

You can further specify this query with other predicates such

as a status code. This is useful if you were looking for specific

tradecraft such as Blind SQL injection or XSS attempts where the

vector is in the URL query string.

You can further filter this down with additional predicates to

search for successful attempts or attempts from specific IP

addresses or against a specific URL in your application stack.

There are several other types of analysis that you could conduct,

ultimately it comes down to your own reporting and security

investigatory requirements.

duckdb.sql(

 f”””

 SELECT

 src_endpoint.ip as src_ip,

 src_endpoint.port as src_port,

 dst_endpoint.ip as dst_ip,

 dst_endpoint.port as dst_port,

 http_request.user_agent as user_agent,

 message,

 status_detail

 FROM read_parquet(‘{LOCAL_PARQUET}’)

 WHERE status_code = 460

 “””

).show()

duckdb.sql(

 f”””

 SELECT

 activity_name as http_method,

 status,

 src_endpoint.ip,

 http_request.url.query_string as query_string

 FROM read_parquet(‘{LOCAL_PARQUET}’)

 WHERE http_request.url.query_string IS NOT NULL

 “””

).show()

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 16

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

Wrap Up

Security data is everywhere and the ALB access log is just one of many kinds of

data we’re interested in as security professionals. While this paper went over

the specifics of parsing ALB access logs, mapping them to OCSF, and storing and

analyzing them, you will find the general concepts can be applied to other types

of security-relevant data, as well.

Whatever data you start with, keep your eye on where you’re going. Performing

ETL on a large amount of data is not trivial. You should always work backwards

from specific use cases generated from appropriate threat modeling and security

data metrics workshops conducted in your own company or by the Query

SecDataOps specialist team.

For more information, request a meeting with our sales team and see if you’re a

good fit for a SecDataOps Workshop!

https://www.query.ai/book-a-demo/

©2025 Query.AI, Inc. • All rights reserved • QWP-07 • 17

Mapping Amazon Application Load Balancer Access Logs to the Open Cybersecurity Schema Framework (OCSF)

Query: Making Open Federated
Search for Security a Reality

Query aims to deliver visibility into all relevant data for security
teams. We provide a federated search solution that allows
operators to access data at the source and in your data lakes,
creating opportunities for more nimble and cost efficient data
storage architectures.

Our customers are using Query to expand visibility for security
investigations, threat hunting, and incident response. They are
drastically reducing the time and complexity of repetitive search
tasks and improving outcomes for investigations. Expose your
security data with Query.

Ready to expedite your
security investigations with
open federated search for security?
For more information visit: www.query.ai

https://www.query.ai/product

