
©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08

Best Practices for Building & Running a 
Security Data Lake on Amazon S3
Contributed by: Jonathan Rau - VP/Distinguished Engineer, Query



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08

Best Practices for Building & Running a Security Data Lake on Amazon S3

Introduction to Amazon S3 ..........................................................................................................................................................................

 

WTF is a Security Data Lake(house)? .........................................................................................................................................................

 

Common Security Data Lake(house) Components ................................................................................................................................

 

Performance Optimization Best Practices ...............................................................................................................................................

 

Wrap Up ............................................................................................................................................................................................................

Table of Contents

1

3

5

 

8

28



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  1

Best Practices for Building & Running a Security Data Lake on Amazon S3

Introduction to Amazon S3 
For almost as long as Hadoop  

Distributed File System (HDFS)  

could mount S3 buckets, data lakes  

(then simply called data warehouses) 

were built on Amazon S3. 

Though you could argue the 

phenomenon stretches even further 

back, with S3 a popular durable storage 

location for raw and archival data for big 

data and security teams for nearly two 

decades. As the big data engineering 

ecosystem kept growing, building data 

lakes (and later, data lakehouses) on 

Amazon S3 and other public cloud object 

storage became table stakes.

With the advent of popular query 

engines such as PrestoSQL and Trino, 

as well as the further development of 

metadata catalogs and metastores such 

as Hive Metastore (HMS), this option 

made more and more sense. 

To provide potential customers with 

seamless onboarding, Amazon  

developed several complimentary 

services over the years such as Amazon 

Elastic MapReduce (EMR), EMR 

Serverless, AWS Glue, Amazon Athena, 

and AWS LakeFormation. 

All of these services are typical 

cornerstones of building a successful 

data lake or data lakehouse on  

Amazon S3.

While, in theory, it’s simple to move or 

write bulk data with streaming, micro-

batching, or ad-hoc batch workloads 

onto Amazon S3, catalog it with AWS 

Glue, and query it with Amazon Athena, 

there is way more to it than that. 

With security teams starting to adopt 

security data lakes and security data 

lakehouses and using Security Data 

Pipeline Platforms (SDPP) and other data 

mobility technologies, the stakes are 

even higher for security teams to get it 

right the first time.



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  2

Best Practices for Building & Running a Security Data Lake on Amazon S3

In this whitepaper, you will learn the various features and AWS-

native tooling that can be used to build a security data lake or 

security data lakehouse. You will learn best practices around 

writing data such as dealing with the “small file problem”, data 

formats, compression, partitioning, indexing, and open  

table formats. 

Additionally you will learn about efficient query patterns such 

as optimizing your queries, joins, aggregations, ordering - we 

will demystify their inner workings. By the end of this paper, you 

will have the knowledge to fine-tune your security data lake or 

security data lakehouse performance.

Author’s Note: While these optimization tips are mostly focused 

on Amazon S3 data being queried by Amazon Athena, they can 

be broadly applicable to building security data lakes or security 

data lakehouses on Azure Blob (ALDSv2), other S3 compatible 

storage (Ceph, Bamboo, Yandex), and querying with a variety of 

other engines such as self-hosted Trino, DuckDB, or ClickHouse.

You have options while building your securtiy data lakehouse.



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  3

Best Practices for Building & Running a Security Data Lake on Amazon S3

WTF Is a Security Data Lake(House)?
Author’s Note: If you are already familiar 

with what a security data lake or lakehouse 

is, and the common components used 

within, feel free to skip over the next  

two sections.

A security data lake and a security 

data lakehouse are related but distinct 

architectures used by modern Security 

Operations (SecOps) and Security Data 

Operations (SecDataOps) teams to  

manage and analyze large volumes of 

security telemetry. 

What makes a data lake a data lake is the 

ability to store disparate data of different 

kinds in one area and analyze or search 

it with a separate compute layer. By 

separating the compute layer from the 

storage layer, these systems are typically 

more cost-effective and higher-scaling 

than traditional databases, OLAP or 

otherwise (OLTP), and are often far more 

cost-effective than a traditional  

Security Information & Event Management 

(SIEM) tool.

In the simplest terms, a security data lake is 

a security-focused data lake which is a data 

repository that can store unstructured, 

semi-structured, and structured data 

used for analytics, detections, searching, 

and visualization. The data is (typically) 

stored in its raw or native forms, such as 

in JSON, CSV, TSV, or text files and utilize 

the relatively cheaper storage of data 

to contain high volumes of data from 

EDR telemetry, SaaS/cloud audit and 

authentication logs, IDS/IPS, firewalls, and 

similarly voluminous data sources.

Security data lakes built on Amazon S3 

utilize the cheaper storage ($23/TB for 

standard tier) smartly alongside data 

lifecycle rules to systematically move data 

of a certain age or type through less-

durable (but cheaper) storage tiers before 

finally archiving them in Amazon S3 Glacier 

or completely deleting the data sets. 

Additionally, specific encryption and 

access controls can be applied on the data 

to maintain a higher level of information 

security and information assurance.

Querying this data has often relied on 

moving the archival data out of the 

lake into searchable systems such as 

Amazon OpenSearch Service or another 

dedicated SIEM or commercial data 

intelligence platforms such as Databricks 

or Snowflake. Data can also be queried 

directly from Amazon S3 using Amazon 

Athena, a serverless query engine based on 

PrestoSQL & TrinoDB, when cataloged or 

crawled using AWS Glue.

A security data lakehouse builds on the 

data lake by providing features typically 

available to data warehouses, also 

known as Online Analytics Processing 

(OLAP) (or simply, analytics) databases. 

Features include the ability to ensure 

ACID transactions (Atomicity, Consistency, 

Integrity, Durability) so that reads and 

writes do not conflict with each other. 

Additionally, other features such as  

schema enforcement, fine-grained access 

controls, and even advanced features such 

as liquid clustering, bloom filters, indexing, 

partitioning, and schema evolution can  

be supported.



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  4

Best Practices for Building & Running a Security Data Lake on Amazon S3

In the AWS ecosystem, the services 

used to build a security data lake and 

a security data lakehouse are often the 

exact same. 

The ACID transactions and other features 

are applied by advanced features of the 

same services and the usage of open 

table formats such as Apache Iceberg, 

Apache Hudi, and Delta Lake. We have 

written about building Apache Iceberg 

data lakehouses on S3 here, and have 

started a series on doing the same with 

Delta Lake here.

The outcomes are the ability to 

accelerate migrations away from SIEMs 

or log management tools to ultimately 

reduce or at least control costs and to 

provide more utility with the data. 

While mainstream SIEMs do provide a 

ton of utility in the form of detection 

content, visualizations, faster index-

based search, and automation - not all of 

these features are required, or desired, 

depending on the vendor. 

Really a security data lake or security 

data lakehouse is about controlling your 

own fate, and it’s a popular choice for 

these reasons.

Blog: Delta Lake for Security Teams: Scalable Log Management & Analysis

Blog: Amazon Athena and Apache Iceberg for Your SecDataOps Journey

https://www.query.ai/resources/blogs/amazon-athena-and-apache-iceberg-for-your-secdataops-journey/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/delta-lake-security-lakehouse/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/amazon-athena-and-apache-iceberg-for-your-secdataops-journey/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/delta-lake-security-lakehouse/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/delta-lake-security-lakehouse/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/amazon-athena-and-apache-iceberg-for-your-secdataops-journey/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07


©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  5

Best Practices for Building & Running a Security Data Lake on Amazon S3

Common Security Data Lake(House) Components
Now that you know what a security data 

lake and security data lakehouse is, let’s 

go over the how. 

This is a breakdown of AWS services 

commonly used to build security data 

lakes and lakehouses, along with 

examples of external tools (e.g., SDM 

platforms, orchestrators) that integrate 

with or enhance these architectures.

Understanding the services used goes 

beyond the simple “lego blocks” and also 

gets into the financial due diligence you 

will be expected to perform as part of 

your SecDataOps program. 

You should thoroughly understand the 

pricing calculations, and thus understand 

what cost levers you can pull. While S3 

has a simple per-GB storage calculation, 

it’s a little less clear how to forecast out 

the Get/List API calls that you are also 

charged for. 

Likewise, the scan charges for Athena 

are easy to understand, but the compute 

consumption side (DCUs) may not be if 

you use provisioned capacity.

Common Services

These are the baseline services that are required to have a self-contained 

system for both the storage and compute layers.

Amazon S3: S3 is an object-storage service that can handle 

petabytes (or even exabytes) of data. Comes with built in 

encryption, data lifecycle management, metadata management, 

and access controls (S3 bucket policies).

AWS Glue: The Glue Data Catalog is a metastore that registers 

the schema of data stored within specific paths in S3. Advanced 

users can also register partitions and indexes to optimize query 

performance. AWS Glue `also provides ETL and data discovery 

capabilities via Glue Jobs and the Glue Crawler, respectively.

Amazon Athena: A serverless SQL query engine based on 

PrestoSQL and Trino. When the data schemas are registered in Glue 

Data Catalog, seamlessly query the data with Athena as if they 

were native database tables.



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  6

Best Practices for Building & Running a Security Data Lake on Amazon S3

Specialized Services

These are services that can be used in addition to the previous three to provide  

extra access control, governance, querying, and visualization capabilities as well  

as data streaming and loading.

AWS LakeFormation: Provide fine-grained access control to tables, views, or specific columns within Athena/Glue 

tables backed on AWS. This allows you to control what specific AWS identities can access what data and how. For 

instance, you can lockdown an AWS IAM Role that has full Glue and S3 access to only be able to execute READ 

actions on a specific table.

Amazon Redshift Spectrum: Amazon Redshift is a purpose-built OLAP data warehouse used for petabyte scale 

slicing-and-dicing and analytical workloads. Redshift Spectrum allows you to directly query Athena/Glue tables 

within the Redshift engine to provide OLAP capabilities without moving all of the data.

 

Amazon QuickSight: A serverless Business Intelligence and reporting service that can integrate with Athena and 

Redshift to create visualizations, charts, and apply AI-powered insights using Amazon Q for Redshift.

Amazon Data Firehose: Formerly known as Kinesis Data Firehose, this service allows you to perform in-transit ETL 

and directly write to Amazon S3 tables with specific partition paths, compression, buffering, and data formats. 

While it can be a relatively expensive service, it is completely serverless and popular for moving native AWS 

sources into S3.



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  7

Best Practices for Building & Running a Security Data Lake on Amazon S3

External Tooling

For data sources outside of the AWS ecosystem, or for host-based data sources such as 

Windows Event Logs or Kubernetes logs, commercial and open-source tools are a popular 

choice. Many of these tools, and security-specific pipeline tools called Security Data 

Management (SDM) tools natively integrate with Amazon S3 similarly to Data Firehose.

FluentBit: FluentBit is a telemetry agent that can be configured to move dozens of discrete types of data from 

Linux and Windows hosts as well as containerized and Kubernetes environments into Amazon S3. Basic filtering and 

pre-processing can also be applied.

Falco Sidekick: Sysdig Falco is a runtime security agent that uses eBPF and kernel monitoring on Linux, Docker, and 

Kubernetes environments to detect suspicious and malicious behavior. It is a popular open source monitoring tool, 

Sidekick is a daemon that can move this specialized data onto Amazon S3 (and several other sources) natively.

Cribl: Cribl is a data telemetry management system that provides a myriad of mechanisms to move host-based data 

(via Cribl Edge) and other push & pull data sources (via Cribl Stream) to downstream sources such as Amazon S3. 

Cribl is more synonymous with a Platform-as-a-Service (PaaS) tool that provides a great deal of customization and 

capability for processing and writing data to S3, but requires deep domain understanding to utilize effectively for 

that purpose.

https://docs.fluentbit.io/manual/pipeline/outputs/s3
https://docs.fluentbit.io/manual/pipeline/outputs/s3
https://github.com/falcosecurity/falcosidekick/blob/master/docs/outputs/aws_s3.md
https://github.com/falcosecurity/falcosidekick/blob/master/docs/outputs/aws_s3.md
https://docs.cribl.io/stream/destinations-s3/
https://docs.cribl.io/stream/destinations-s3/


©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  8

Best Practices for Building & Running a Security Data Lake on Amazon S3

Performance Optimization Best Practices
While it is simple enough to create a S3 

bucket, dump JSON data into it, torture 

yourself crawling it with AWS Glue, and 

querying it with Amazon Athena–that 

does not make an effective security data 

lake or security data lakehouse.

And while you certainly could do that 

and be fine if you only had a few 100MBs 

or dozens of GBs of data to query in an 

emergency, it would not be performant 

at all. 

Think of the security jobs to be done 

that you want to support with this 

architecture. Is saving a few $1000 a 

month on SIEM costs worth it when 

you’ll have 10X slower queries that cost 

almost the same in Athena? 

Is it worth being able to immediately join 

contextual datasets with detections if 

it takes 2X as long and 5X as expensive 

versus you analysts opening up 10 tabs in 

Google Chrome?

What’s that tired old mantra? Don’t let 
perfect be the enemy of good? Think of 

the inverse, don’t let “good enough” be 

the enemy of good. 

SecOps and SecDataOps teams, as well 

as all of your stakeholders and customers 

certainly deserve better and that means 

meeting a minimum standard of at least 

having performance optimization versus 

your legacy SIEM, if not an outright cost 

optimization to go along with it. 

And even if you’re a SMB - as an 

overwhelming majority of companies 

are with less than 500 employees - don’t 

think that your data volumes cannot 

grow to significant scales. Even a small 

startup can easily rack up 10s if not 100s 

of TBs per month across your entire 

estate of cloud logs, host-based logs, 

and other security-relevant signals from 

productivity and developer tools like 

Zoom, Slack, GitHub, Hubspot, and more.

So with all that in mind, before we 

get into optimizing your writes and 

reads, ensure that you are building 

a security data lake or security data 

lakehouse for the right reasons! You 

should always work backwards from 

your main stakeholders and SecDataOps 

requirements. 

Sure, you can save oodles and oodles 

of currency by reducing your SIEM 

ingestion license and using S3’s $23/TB 

storage, but what happens when you are 

scanning 100s of GBs to TBs to fulfill your 

detections? 

Amazon Athena is $5/TB of data 

scanned, simple napkin math shows that 

a detection across network data such as 

ZScaler ZIA, Akamai firewall logs, AWS 

VPC Flow Logs, and otherwise to look 

for known malicious C2-associated IP 

addresses or data transfer volumes over 

specific thresholds can be several times 

that per-terabyte cost. 



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  9

Best Practices for Building & Running a Security Data Lake on Amazon S3

Even for the smallest environment, you 

can rapidly generate several TBs per 

month (or faster). Running scheduled 

Athena queries that search these data 

sources and compare the source IPs to 

a large static list of data or performs 

aggregations on “bytes in” that scans just 

5TBs of data collectively is already $2 

more expensive than it costs to just store 

a fraction of that data.

The above example is entirely notional 

but not at all removed from the reality  

of the types of workloads and queries 

ran on a security data lake or security 

data lakehouse.

The first step you must take before starting to build a security data lake or security data 

lakehouse is asking yourself: “Do I really need this?” Here are some questions you may 

find yourself asking yourself and your team:

• Do we have the appropriate human capital to dedicate towards this project? Have we 

trained our staff to operate with this architecture? Does anyone know SQL?!

• Can we effectively execute administrative and operational tasks with this new 

architecture? Do we have robust alerting, monitoring, and the people to do 

something about it?

• Have we taken a hard look at “worst case” compute costs? Will they counterbalance 

the cost savings?

• Is the data relevant to our analytical, contextual, detection, and/or enrichment  

use cases?

• Can we keep the data in place (e.g., in your SIEM, in a traditional database, behind the 

API) or will we utilize it better in the lake or lakehouse?

• Are you writing too much, or too little, relevant data in your lake or lakehouse?

• Are the reports and advanced use cases we want to support with this data going to 

make a tangible difference?

• Are our detection use cases tuned effectively? Do they run too often? Do they 

request too much irrelevant data?

You may find that you are better off staying on the SIEM and reducing the total data size 

there by offboarding unneeded sources, or removing unnecessary keys or columns. You 

may realize that you don’t have the administrative, financial, nor operational prowess to 

support moving to a security data lake or security data lakehouse. You may actually find 

that you don’t reduce costs, but maybe you improve operational efficiency, and it could 

be worth it. Heck, maybe this paper is the key to unlocking operational efficiency?! 

All that out of the way, effective cost optimization all flows from the data, so firstly, let’s 

focus on effective writing.



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  10

Best Practices for Building & Running a Security Data Lake on Amazon S3

Minimum necessary fields

As I touched on in the opening to this section, you really need to work backwards from 
your use cases. It is very tempting to keep all of the fields for all of the logs, but utilize 
previous detection, triage, and response activities and agonize over the details (within 
reason) to only bring back relevant data that is either necessary for your detection 
logic or for attribution and triage context.

This should be both a combination of pruning down the fields that you actually 
need and the activities you actually care about. Do you need to have five different 
timestamps if you are writing detections that implicate when an event happened 
instead of ended? Do you need the packets transferred if you’re just aggregating on 
bytes? Do you actually need traffic that was allowed? Only you can decide for yourself. 

For instance, let’s consider a basic Amazon VPC flow log which logs virtualized OSI 
Layer 4 traffic (TCP/UDP) that comes across your VPCs and hits the various Elastic 
Network Interfaces (ENIs) attached to it. This is not representative of all potential 
fields, as denoted here, you should be even more aggressive when it comes to adding 
extra data into the log not available otherwise.

This log shows accepted traffic from one source to another, both are internal to the VPC, 
there are three timestamps as well as the flow log version (the first field, 2). 

You may consider getting rid of the version (unless you maintain a varied amount), as 
well as stripping the two “extra” timestamps for start and end of the flow. Additionally, 
you may completely want to exclude this data since it was accepted traffic and it is also 
internal data. The ENI ID is the main identifier, but do your triage and IR analysts actually 
use this for enrichment or pivoting? Is the source IP good enough?

Again, only you can answer this question. The less rows and less columns you carry, 
the more cost effective you will be in addition to less data that an analyst has to scan 
through. Not every analyst may know every single data point for every log format (unless 
you used a standardized data model, more on that later).

Performance  
Enhancing Writes

While Performance Enhancing 

Drugs (PEDs) may give you an unfair 

advantage in baseball or mixed martial 

arts, Performance Enhancing Writes 

(PEWs) are a necessity to get any sort 

of advantage over a SIEM or other log 

management system with a security 

data lake or security data lakehouse.

When all of these best practices are 

combined they can provide better 

value-per-dollar by effectively utilizing 

right-sizing and leading to faster reads 

downstream, minimizing query runtimes 

and data scan sizes. Additionally, 

these best practices should also be 

deciding criteria from any Security 

Data Management (SDM) or other data 

mobility solutions you may look at. 

While there are a myriad of ETL 

enhancements and optimizations to 

make, if you cannot effectively write 

the data with those tools, you may be 

better off going with more customizable 

options or adopting another layer of ETL 

in between a “staging lake” and your 

operationalized security data lake or 

security data lakehouse.

2 123456789010 eni-1235b8ca123456789 172.31.16.139 172.31.16.21 20641 22 6 

20 4249 1418530010 1418530070 ACCEPT OK

https://docs.aws.amazon.com/vpc/latest/userguide/flow-log-records.html#flow-logs-fields


©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  11

Best Practices for Building & Running a Security Data Lake on Amazon S3

Optimal Data Formats & Data Types 

Traditionally, security appliances and 

default log formats were typically 

written to text files or CSV (or, God 

forbid, XML �). As RESTful services 

became more prevalent, logs could be 

retrieved via API, often in JSON but 

also those other formats. Some security 

tools even offer direct exports such 

as Broadcom Carbon Black or AWS 

GuardDuty able to support seamless 

writing into S3.

A commonality with all of these data 

sources - CSV, text, TSV, XML, JSON, 

etc. - is that they are horribly inefficient 

to query at scale. In the case of Amazon 

Athena, it does support all of these 

with native Serialization/Deserialization 

(SerDe) rules but this comes at 

additional cost due to the extra 

compute and time it takes to fulfill the 

query. While analysts can easily open 

this raw data up and use CLI or IDE tools 

to read them, at TB scale let alone PB 

scale this simply will not - well - scale.

You should provide easy to use 

interfaces to your analysts, that is your 

frontline infantry afterall, who must 

be empowered with logistics. The data 

should use binary, columnar formats 

that are far more efficient to read, filter, 

and sort by Amazon Athena and other 

tools (DuckDB, ClickHouse, et al). King 

among the binary file formats is Apache 

Parquet, it is also used by every single 

major open table format such as Delta 

Lake, Hudi, and Iceberg.

Besides being very query-efficient, 

engines that read and write Parquet 

benefit from increased data types. 

It’s very tempting to turn everything 

into a string, but unlike JSON, Parquet 

natively supports datetime types as 

well as a variety of integer and float 

types. In a CSV or text file, that would 

be a string, but attempting to generate 

a JSON file with a script and writing a 

Python dictionary with a natively-typed 

datetime would throw an error. 

It’s more preferential to avoid the 

usage of casting or transform operators 

at query time, such as transforming 

a stringified bytes_in column back 

into an integer before running a 

mathematical operation on it.

Many commercial SDM and data 

mobility tools, such as Cribl, offer the 

ability to write data as Parquet natively. 

In fact, many AWS services such as VPC 

Flow Logs and CloudFront Access Logs 

also output in Parquet format natively 

as well. 

If you are utilizing a homegrown SDM 

or ETL pipeline tool, strongly consider 

transforming the data and writing it 

as Parquet. You can add tools such as 

Polars, PySpark, or DuckDB into your 

homegrown SDM/ETL stacks to write 

the data to Parquet and retain those 

proper data types.



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  12

Best Practices for Building & Running a Security Data Lake on Amazon S3

Partitioning the Data 

A data partition is just like a partition on a disk, or a partition wall 

you installed in your home office, it keeps specific things in their 

place. Partitions in Glue are essentially the subdirectories (paths) in 

Amazon S3 where data matching a specific categorization is kept. 

Partitions should be built from low low-cardinality columns in your 

data such as time-based columns (year, month, hour) or on high-level 

categories such as a specific vendor, source (e.g., firewall, EDR, IDP), 

or otherwise.

You don’t necessarily need to have the partition columns defined in 

your data source to write partitions in S3, to S3 they’re just another 

folder/path anyway. However, certain open table formats (again, 

more on that later) do require you to have the columns available 

in the dataset because of the non-reliance on a data catalog (Delta 

Lake) or because the partitions are “hidden” (Apache Iceberg).

Before moving any further, what is the so what? Partition data 

written to AWS Glue Data Catalog is used within the query planning 

phase of an Amazon Athena query. If you specify the partitioned 

columns in your dataset, Athena will transparently request all of 

the partitions that match your query pattern and only run the query 

against the files in those S3 folders/paths. This is also known as 

partition pruning or partition pushdown and greatly reduces the time 

it takes to return results when queries are not directed against the 

whole table, also known as a full table scan.

A popular partition format follows along with how partitions are 

designed with Hadoop and Hive, this is called a “Hive-like” or “Hive-

compatible” partition which requires the partitions to be labeled. To 

make this a bit more obvious, consider the following path (to stay 

with our VPC Flow Log examples) that a typical flow log is written 

into S3 from your log configuration.

The S3 folders, or paths–whatever you want to call it, essentially 

define the partitions but this won’t be automatically written into 

AWS Glue if you crawled it. Nor will it be automatically written into 

Athena using DDL unless you provided PARTITION() data in your 

DDL. A lot of data mobility tools, commercial and open-source, 

will write your paths out like this which is an antipattern for fast 

onboarding and automatic recognition of your partitions. Again, you 

could define them in DDL, but then you are stuck automating ALTER 

TABLE ADD PARTITION or MCSK REPAIR TABLE queries against each 

table with this pattern.

In a Hive-like partition format, the paths should look something like 

this example:

my-datalake-bucket/AWSLogs/account_id/vpcflowlogs/region/year/
month/day/logfiles0001.txt.gzip

my-datalake-bucket/AWSLogs/account_id=account_id/
source=vpcflowlogs/region=us-east-1/year=2025/month=04/day=21/
logfiles0001.txt.gzip



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  13

Best Practices for Building & Running a Security Data Lake on Amazon S3

If you crawled the data in the folder underneath s3://my-

datalake-bucket/AWSLogs/ each of those labeled columns would 

be automatically added into the table schema definition and all 

partitions registered into the Glue Data Catalog. That said, when you 

write your queries, you will still need to specify the columns which 

pertain to the partitions. Glue is smart enough to get at the partitions 

to the “right and left” of the partitions you specify. 

Consider the following SQL statement where you want to retrieve 

the timestamp of your flow logs and certain fields within a certain 

timeframe, in this case, after April 19th 2025.

Just because you filtered by timestamp in your predicate, that 

is not enough to actually use the partitions. Now, if you were 

using Iceberg or Hudi with partitions built off of a specific field, it 

would, but for the time being assume this is just boring ole’ AWS 

Glue Data Catalog native table format.

To actually have the partitions pruned in your query plan, you 

would need to specify what specific partitions you wanted.

In this example, by specifying April 2025 using your predicate 

aligned to those specific partitioned-by fields, when Athena 

builds your query plan, it is looking for data with a glob pattern 

like this: /AWSLogs/account_id=*/source=*/region=*/

year=2025/month=04/day=*/*. The more partitions you 

provide, the more precise the pruning will be. Now instead of 

going through potentially 100s of paths, there will be a smaller 

amount of data scanned. Now this brings up another potential 

antipattern: too many partitions.

“Too many partitions?! What does 

that mean?” - You (� � �)

SELECT 

    src_ip 

    src_port 

    dst_ip 

    dst_port 

    timestamp 

FROM security_lakehouse.vpc_flow_logs 

WHERE timestamp >= TIMESTAMP ‘2025-04-19’

SELECT 

    src_ip 

    src_port 

    dst_ip 

    dst_port 

    timestamp 

FROM security_lakehouse.vpc_flow_logs 

WHERE timestamp >= TIMESTAMP ‘2025-04-19’ 

AND 

    year = 2025 

AND 

    month = 04



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  14

Best Practices for Building & Running a Security Data Lake on Amazon S3

Look, look, don’t hate me, that’s what the Athena docs say. 

In practice, this can be rather complex, but in theory it is not 

too hard. Remember, the partitions are used for the query plan 

to only pick up the right data from the right folders/paths in 

S3. Now, if you had 10s of 1000s of folders, this would still be 

slowed since the parallelization of Athena is largely an unknown 

black box - seriously how many paths per “node” are hit? Too 

many partitions are introduced when you set partitions off of 

high-cardinality fields such as asset identifiers or attributes 

such as MAC addresses or IP addresses. 

Some vendors do that by default, which is setting you up for 

failure. (No really, Azure VNET Flow Logs are written with MAC 

Address AND resource-specific ID partitions AND to the minute-

specificity.)

Additionally, if you partition by time too much you have the 

same issue. An hourly partition is about as far as you want to 

go, and even then, with properly typed timestamps in your 

data written in Parquet, you could likely get by with no more 

than a day partition. Of course, a lot of this is also dictated by 

the actual queries you write, which we will cover in the next 

major section around efficiently querying your data. Especially 

when you start to introduce advanced query patterns such as 

using UNIONS and JOINS or building views across two or more 

datasets, now their partitions also come into scope.

With that in mind, there is a way to solve this though. As 

your security data lake or security data lakehouse tables and 

partitions grow in number you can start to implement Indexes 

over the partitions. Whatever partitioning strategy you choose, 

be consistent with it so that you can make future advanced 

query patterns possible without throwing errors and making 

your SecDataOps team cry out in agony, gnash their teeth, and 

claw off their clothes.

Author’s Note: Consider reading one of my blogs from last 

year, Auto-partitioning your Security Data Lake with Apache 

PySpark and Amazon EMR Serverless, where I demonstrate 

how you can use EMR to apply partitions on some truly big 

data. Additionally, while I did not cover it, you can consider 

using partition projection to avoid needing to redefine tables 

while also not using ALTER TABLE ADD PARTION or MCSK 

REPAIR TABLE statements.

Blog: Auto-partitioning your Security Data Lake with Apache PySpark and Amazon EMR Serverless

https://www.query.ai/resources/blogs/auto-partitioning-your-security-data-lake-with-apache-pyspark-and-amazon-emr-serverless/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/auto-partitioning-your-security-data-lake-with-apache-pyspark-and-amazon-emr-serverless/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html
https://www.query.ai/resources/blogs/auto-partitioning-your-security-data-lake-with-apache-pyspark-and-amazon-emr-serverless/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/auto-partitioning-your-security-data-lake-with-apache-pyspark-and-amazon-emr-serverless/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07


©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  15

Best Practices for Building & Running a Security Data Lake on Amazon S3

Utilize Partition Indexes 

As you learned in the previous section, partitions are good. Use them! 

That’s how you keep your data organized and with proper pruning, it 

leads to much greater performance versus full-table scans over your 

data. You also learned (hopefully) that eventually, no matter how 

stringent you are in ensuring minimum necessary partitioning, you 

will likely accumulate a lot of damn partitions.

To help account for this, as your partitions grow and you notice 

query performance drop, consider implementing partition indexes. 

A partition index is a performance optimization feature that helps 

speed up queries by indexing the partition keys of a table. The index 

is built from a subset of the partition columns already defined in the 

table, you can group one or more different partitions into an index 

which will fetch any/all of the partitions defined in the column at 

query time.

You can build the indexes off of integer, string, and datetime 

partitions and support up to three different partition indexes per 

table. You should build them to fulfill common query patterns, going 

back to the previous example of the flow log table in the previous 

subsection, you could build an index that preloaded account_id, 

year, month, and day. This would be helpful if you were constantly 

querying across data in specific accounts, such as your workloads in 

specific AWS Account IDs for your Production environment(s).

Indexes will automatically update as new partitions are created, 

however, after you set the index you cannot (nor should you even 

want to) modify the partitions. If you add new partitions after the 

index is created, you’ll need to ensure they do not change the order 

of the previous partitions and you’ll have to rebuild your indexes to 

account for any new partitions.

To define a partition, you build them using the AWS API (via the 

Console, API, CLI, or SDKs) such as the Amazon SDK for Python, 

boto3. Building on the previous given example, you could build the 

index like this.

Frustratingly enough, while Redshift Spectrum, Amazon EMR,  

and AWS Glue ETL Spark DataFrames will automatically work 

with these partitions but Athena will not, you will need to 

modify your table to enable partitioning filters with the following 

SQL DML.

As always, ensure you are working backwards from the querying 

use cases, be it detections or ad-hoc queries to design your 

indexes in an efficient manner.

aws glue create-partition-index \ 

  --database-name security_lakehouse \ 

  --table-name vpc_flow_logs \ 

  --partition-index ‘{ 

    “Keys”: [“acccount_id”, “year”, “month”, “day”], 

    “IndexName”: “account-yyyymmdd-index” 

  }’

ALTER TABLE security_lakehouse.vpc_flow_logs 

SET TBLPROPERTIES (‘partition_filtering.enabled’ = ‘true’)

https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html#partition-index-1


©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  16

Best Practices for Building & Running a Security Data Lake on Amazon S3

Avoid the “Small File Problem” 

If you’ve read any of our previous technical blogs on SecDataOps, 

or have read even the most basic of literature about data lakes and 

data lakehouses, you probably have heard of the “small file problem”. 

Athena, and other query engines that execute queries on data in 

object storage have to read out the contents of the actual files, duh. 

As touched on with partitioning, the larger that query plan and the 

larger the actual query execution is, the less performant and more 

expensive your queries will become. Sad!

Another major antipattern you can introduce in your security 

data lake or security data lakehouse is writing way too many 

small files, even worse when they are in an inefficient data 

format and not partitioned. It’s much faster for Athena (and other 

engines) to read one big (200-400MB) Parquet file than it is to 

read 100 smaller Parquet files that aggregate to the same amount  

(2-4MB each). 

This performance is exponentially faster when actually using 

Parquet, you will certainly get some performance bump with a 

similarly large JSON file versus a ton of smaller JSON files, but not 

as much as Parquet.

The easiest way to avoid this issue is to address it in your 

pipeline(s), but again, you must work backwards from your 

detection and searching use cases. If you have a requirement for 

near real-time data because you have a certain detection that 

needs to be run at a fast cadence, it may be unacceptable to 

delay and batch many smaller datasets into a bigger file. This is 

only something that you can determine. 

For a majority of security use cases that will use a security  

data lake or security data lakehouse, you may need that 

extremely low latency. Tools such as Amazon Data Firehose or 

Cribl Stream can buffer data in a certain time and have desired 

file sizes configured.



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  17

Best Practices for Building & Running a Security Data Lake on Amazon S3

However, this needs to be taken into consideration against 

your partitioning strategy. For larger environments, it wouldn’t 

be difficult to generate a TB if not more of data in a single day, 

maybe even a single hour. Even when buffering your writes and 

writing into the optimal size of 128 MB (as per this AWS blog on 

performance tuning) that still ends up being several 1000 files 

per TB. When possible, you should fine-tune the sizes of your 

files against your query patterns by looking at the stats of the 

planning and execution phases of your queries. You can also use 

that data to further introduce new partitions and indexes  

as required.

Other ways to contend with the “small file problem” is post-

hoc processing. For instance, running a nightly job that will read 

the previous 24 hours of data and combine the files into more 

optimal sizes, especially if you cannot buffer enough data in 

your necessary latency SLA to get the files to the optimal size. 

Additionally, you can consider using an open table format such 

as Iceberg with AWS Glue that can automatically compress  

and optimize the files. Delta Lake can also make use of the 

optimized writes and post-hoc optimization using the Delta 

PySpark extension.

At a certain scale in your security data lake or security data 

lakehouse, you will have wrung out all of the compaction and 

optimization that you can get, it will be up to your partitioning, 

indexing, and query patterns to further optimize your query 

performance. At the end of the day, you are not only measured 

on compute and data scan sizes in Athena, but also the S3 APIs 

like List/Get Object. Having a lot of smaller files can rack those 

costs up quickly, as well as potentially outright fail your queries 

due to rate limiting.



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  18

Best Practices for Building & Running a Security Data Lake on Amazon S3

Efficient Compression 

Finally, we come to compression. If you’ve worked on a 

computer for any length of time you are probably familiar  

with ZIP, RAR, or tarballs that downloads often come 

compressed with. Compression codecs of various kinds are 

used to, well, compress the files so they take up less space on 

disk. This is great for cost optimization of storage, but when 

you’re querying that data you will want to use an efficient 

compression codec to ensure your query performance does  

not suffer.

This subsection assumes that you will, rightfully, use Parquet 

as your data format. Besides being columnar and optimized for 

selective reading of fields, Parquet files are also splittable and 

can utilize very efficient compression codecs. Read more here 

about what file formats and what compression are supported 

by Athena, we will only focus on three of them. 

Really when it comes to compression you have to strike a 

balance between cost optimization and query performance 

optimization. That is greatly oversimplified, because the actual 

queries will cost money as well, so even if you index on storage 

costs you may end up nullifying that advantage with poor  

query performance.

The three major compression codecs to use with Parquet data 

are GZIP, Snappy, and ZSTD. These are all very well supported 

by streaming tools as well as data engineering libraries such as 

Pandas, Polars, and PySpark.

Compression Type Compression Ratio Decompression Speed Athena Performance S3 Cost Efficiency Notes

SNAPPY Medium (~1.5–2x) Very Fast Best for speed Less savings Great for low-latency 
interactive queries

GZIP High (~2.5–4x) Slower Slower queries Best storage savings
CPU-intensive; 
good for archival or 
infrequent access

ZSTD Very High (~3–5x) Fast Balanced Good savings
Best of both worlds 
— especially for large 
datasets

https://delta.io/blog/delta-lake-optimize/


©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  19

Best Practices for Building & Running a Security Data Lake on Amazon S3

The compression codec that I personally use for our own 

security data lakes and security data lakehouses (yeah, we have 

multiple) at Query is ZSTD. It offers the best of both worlds 

with even more compression ratio versus GZIP, which is default 

compression codec used by a lot of security sources that 

support direct writes into S3 buckets. 

While we may use ZSTD, it may not be the best, consider the  

following table for a summary of compression characteristics.

However, you may find that the cost savings are not worth the 

additional performance penalty compared to Snappy, which 

compresses and decompresses incredibly fast — hence the name. 

This performance penalty may not become apparent until you are 

nearing petabyte scale data storage, which shakes out with host-

level telemetry from EDRs or from firewall appliances that serve 

up a high amount of data. 

Are you noticing a theme? The Ops part of SecDataOps is 

incredibly important to inform your choices and possible actions 

here, as well as the financial implications.

It is worth mentioning that you may completely eschew 

compression if you have relatively small amounts of data written 

per typically queryable time periods. That will give you the best 

overall performance, as even Snappy-compressed data has CPU 

overhead to decompress and ultimately query.

Metric SNAPPY GZIP ZSTD

Compression Ratio ~1.5–2.0x ~2.5–4.0x ~3.0–5.0x

Compression Speed Very Fast Slow Fast

Decompression Speed Extremely Fast Slow Fast

CPU Usage 
(Decompress)

Slow High Moderate



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  20

Best Practices for Building & Running a Security Data Lake on Amazon S3

Performance Enhancing Reads 

We’re not done with the performance enhancing jokes yet. If 

optimizing your writes into S3 for your security data lake or 

security data lakehouse is just a “pictogram” of the “gear”, then 

optimizing how you query your data is like injecting 69420 

deciliters of Chilean Bull Shark Testosterone directly into your 

SecDataOps program. NICO BABY, WE’RE WINNERS!

Author’s Note: GTA IV jokes aside, bull shark testosterone isn’t a 

real thing, Chilean or otherwise.

While enhancing the performance of your query patterns may 

not allow you to defend, and then get stripped of your light 

heavyweight strap you will certainly feel like a star. Or at least, 

feel less bad when you look at how long that query plan and 

query execution took in Athena in preparation to explain to your 

leadership why that “Big Money Saving SIEM Migration” thing 

ain’t exactly working out…

Actually, nevermind, one more fitness reference. If optimizing 

your writes into your security data lake or security data 

lakehouse is a good diet, optimizing reads from them is actually 

working out. While you can certainly get a lot of performance 

mileage, so to speak, from optimizing writes it is how you 

ultimately use the data that will be the real measuring stick  

for performance. 

In this section, we’ll dive into some high level query 

optimizations you can take into account when developing  

your detection content or search patterns. Obviously, since we’re 

talking about Athena, this will be a very SQL-heavy section.



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  21

Best Practices for Building & Running a Security Data Lake on Amazon S3

Limit Fields Queried

This is about as “SQL 101” as it gets here. Remember that whole 

minimum necessary thing? Well it applies up and down your 

whole stack. Whether creating detection content or performing 

ad-hoc searches or writing analytics, you want to only bring back 

the data you’ll need. 

Just because you right-sized the amount of columns (or keys) 

that you’ll ultimately define in your tables, doesn’t mean that 

every single query needs to retrieve the same data.

While it’s very hard to estimate performance efficiencies in  

the form of percentages of data scanned or the amount of  

time that the query ultimately takes, you will always be  

faster when you request specific data from your Athena  

tables versus using SELECT *.

Again, going with the VPC flow logs table example, grabbing the 

right amount of data to fulfill your query is paramount.  

So do more of this:

And do less of this (actually, don’t do this):

Even in Parquet, reading unnecessary columns increases data 

scanned and decompression overhead. By selecting only the 

fields that you need you will reduce memory usage, speed up 

execution, and lower query cost with Athena.

SELECT 

    src_ip 

    src_port 

    dst_ip 

    dst_port 

    timestamp 

FROM security_lakehouse.vpc_flow_logs 

WHERE timestamp >= TIMESTAMP ‘2025-04-19’

SELECT 

    * 

FROM security_lakehouse.vpc_flow_logs 

LIMIT 1000000



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  22

Best Practices for Building & Running a Security Data Lake on Amazon S3

Partition Pushdown

This is largely redundant with what was detailed in the 

Partitioning the data subsection, but it is worth  

repeating again. 

Your partitions are not automatically applied.  

(Author’s Note: they can be in certain instances with Hudi and Iceberg!)

When you’re using the default Glue table format, you must 

always specify the partitioned field(s) in your predicates. This 

goes doubly for tables that use partition indexes, you won’t get 

any of the performance benefits of partitioning nor indexing if 

you are not specifying the fields.

While using the Athena console in AWS, the fields that are 

partitioned will be denoted with a (partitioned) label next to 

them, this information is gleaned from the Glue Data Catalog. 

If you will be remotely querying with Athena using the SDK or 

another intermediary service, it would behoove you as part of 

your SecDataOps governance duties to document all of the table 

schemas along with partitions and indexes. Ideally, in a rich-text 

searchable back end such as Confluence or another tool, and not 

just living in a Slack message.

Information access is a big part of a successful adoption for 

a SecDataOps program, as well as your security data lake or 

security data lakehouse journey. You could apply that diligence 

to just about everywhere - your pipelines, your data sources, 

normalization schemes, table metadata, and more!

Optimized Ordering

The SQL ORDER BY clause will order a result set, ascending or 

descending, off of a specific column. These types of queries are 

helpful for determining “Top N” or “Bottom N” insights from your 

various tables. 

You should almost always use these with a LIMIT confined by 

how many insights you’re trying to find. If the data is going into a 

visualization or report, think hard about the readability as well as 

the usefulness of providing “Top N” or “Bottom N” sort of metrics.

SELECT 

    src_ip, 

    bytes_in 

    timestamp 

ORDER BY bytes_in DESC 

LIMIT 100



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  23

Best Practices for Building & Running a Security Data Lake on Amazon S3

Optimized Grouping

The SQL GROUP BY clause is used to create summary 

aggregations of your data, helpful for measuring averages or 

other mathematical operations by specific fields in your data. For 

instance, as an extension of a “Top N” query for a visualization, 

you can use GROUP BY to get the top 25 external IP addresses 

by data volume, which may be useful for firewall or IDS rule 

finetuning or as part of determining data exfiltration impacts.  

For more information on GROUP BY and some hands-on examples, 

check out our Introductory SQL for SecOps: Exploratory Data 

Analysis with DuckDB blog.

When performing aggregations, only include necessary fields in 

the GROUP BY clause to minimize CPU and memory usage within 

the Athena nodes. Athena distributes rows to worker nodes 

based on a hash of the GROUP BY columns. It’s also important 

to group by columns that have a uniform distribution of values, 

as this helps balance the workload across nodes. If the data is 

unevenly distributed, one node may handle a disproportionate 

amount of the data, leading to performance bottlenecks while 

other nodes remain underutilized.

Sometimes, redundant columns are added to the GROUP BY 

clause due to SQL requirements, any selected field must be 

either grouped or aggregated. For example, if you’re grouping 

by src_ip and also selecting src_port, you may end up writing 

GROUP BY src_ip, src_port, even though src_port  

is uniquely determined by src_ip in each row of your flow  

log data.

To avoid this and improve performance, you can use the 

ARBITRARY() function. It returns an arbitrary value from the 

group and allows you to select values like src_port without 

including them in the GROUP BY clause. 

If you will be grouping and ordering, apply the ordering last, and 

ensure that a LIMIT is defined overall that is both actionable and 

relevant to whatever report or investigation  

you’re conducting.

https://www.query.ai/resources/blogs/introductory-sql-for-secops-exploratory-data-analysis-with-duckdb/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/introductory-sql-for-secops-exploratory-data-analysis-with-duckdb/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07


©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  24

Best Practices for Building & Running a Security Data Lake on Amazon S3

Optimized Joins

SQL JOINS are an advanced function that combines data across 

two or more tables, useful for enrichment and analytical queries. 

For instance, you may wish to join your VPC flow log data by 

eni_id into another table (ec2_asset_info) to retrieve asset-

specific information such as the hostname or instance_id. 

This can also be used to join disparate log sources together to 

tell the full story of the flow of traffic such as joining Amazon 

CloudFront, AWS WAF, Amazon Application Load Balancer, 

and VPC flow logs together by a specific source IP. However, 

doing something that complex can lead to a hefty performance 

degradation and the query may outright fail. 

The reason for this is that, using typical equality-based joins, 

Athena uses a distributed hash join strategy. It builds an in-

memory “lookup table” from the right-hand table and distributes 

it to all worker nodes. The left-hand table is then streamed, and 

rows are joined on matches in the lookup table. Because the 

lookup table is in memory, keeping the right-hand table as small 

as possible reduces memory usage and speeds up the join. The 

more tables that are used, the slower the performance will be.

Just like with ordering, data skew can negatively impact join 

performance. If many rows share the same join key values, a 

single worker node may receive a disproportionate amount 

of data to process, leaving other nodes underutilized. To 

ensure efficient parallelism, try to use join keys with a uniform 

distribution of values across rows.

For further optimization, ensure that you are filtering first in your 

WHERE clause to select a specific IP address along with other 

behaviors, and apply your partition pushdowns. Remember, this 

goes back to the optimized write section, you’ll want to ensure 

that you have consistent partitioning (and indexing) strategies 

across all of your tables in your security data lake or security data 

lakehouse. You can also consider selecting distinct values with 

SELECT DISTINCT and even applying aggregations beforehand 

to further speed up the query execution.

For more advanced uses, you can use CREATE TABLE AS SELECT 

(CTAS) to create an intermediary table of an even smaller size 

and apply a dynamic partitioning strategy along with  dropping 

empty values for the data that you want to join on such as in the 

following SQL statement.

For extremely complex joins, you should still consider 

further breaking up the queries into multiple steps and using 

intermediary SecDataOps automation workflows to perform the 

joins in memory by retrieving the filtered data from Athena and 

then writing the results to Polars DataFrames, Arrow tables, or 

using DuckDB on the raw files to accomplish the join and not put 

so much cost pressure on Athena.

SELECT 

    src_ip 

    src_port 

    dst_ip 

    dst_port 

    timestamp 

FROM security_lakehouse.vpc_flow_logs 

WHERE timestamp >= TIMESTAMP ‘2025-04-19’



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  25

Best Practices for Building & Running a Security Data Lake on Amazon S3

Avoid Functions and Casting

Calling back to the Optimal Data Formats & Data Types 

subsection, you should avoid using functions and casting  

when at all possible. Casting is an operation that dynamically 

changes the data type of a specific field, or fields. This is 

common to use when using poorly written tables such as data 

that stringifies all fields in a JSON file, you’d need to use casting 

to transform specific fields into specific types to be able to use 

prebuilt functions. 

For instance a statement like SELECT SUM(CAST(bytes_in 

as INTEGER)) as sum_bytes FROM security_lakehouse.

my_bad_vpc_table ORDER BY sum_bytes DESC LIMIT 1000 

would take much longer than executing the same query where 

bytes_in is the proper integer data type.

Athena can only push filters down to the storage layer (like 

S3) if the filter expression is simple. Using a function or cast 

on a column blocks predicate pushdown, causing Athena to 

scan more data than needed, and defeats the partitioning and 

indexing strategy you use anyway. Like anything else in Athena, 

operations are applied per row and will consume extra CPU per 

row processed, so casting can negatively affect performance on 

very large datasets.

Likewise, casting will negatively affect joins by disrupting the 

hashed join operation that happens under the surface; it’s 

more expensive and less efficient to hash a field when a cast, a 

function, or both are used. 

Again, this can be prevented by ensuring that your field is in the 

correct data type for the operations that will be applied against. 

This goes doubly for more specialized functions such as FROM_

ISO8061_TIMESTAMP that will convert a stringified ISO 8061 

timestamp into a proper SQL TIMESTAMP data type.

Not all functions are necessarily “bad” though, using 

mathematical aggregation such as COUNT() and SUM()  

are native aggregate functions that are optimized by Athena. 

However, if you’ll be using the functions in JOIN or WHERE 

clauses, the performance penalty will resurface. Again, working 

backwards from your use cases should drive your table  

schema design!



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  26

Best Practices for Building & Running a Security Data Lake on Amazon S3

Consider Using Views

A SQL view is a logical table built from one or more other tables, 

this can be useful to simplify complex query patterns by defining 

a view with all of your aggregations, joins, unions, and other 

specialized operations. 

In cases where you SecDataOps analysts and engineers are 

directly authoring queries instead of scheduling them or used 

outside of automated detection content, having views defined 

can reduce cognitive load and ensure that well optimized queries 

are predefined.

Views will not provide any performance improvements. Views 

in Athena are not cached or materialized and essentially work as 

inlined functions that will apply your query logic at query time. 

So predefining complex joins in the view is not different than 

executing a complex join in your SQL statements. 

If you are finding that you are making views to disaggregate 

certain datasets (such as using CROSS JOIN UNNEST to loop 

through arrays) or to cast and convert several data types, this 

type of feedback must make its way back up your ingestion loop.



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  27

Best Practices for Building & Running a Security Data Lake on Amazon S3

Consider Normalization

As we write about in a lot of our content, we love the Open 

Cybersecurity Schema Framework (OCSF). If this is your first time 

reading about the OCSF, or if you are coming back to it after an 

absence, consider reading our beginner and executive-friendly 

blog: Query Absolute Beginner’s Guide to OCSF. For a more 

detailed explanation of OCSF, see our Definitive Guide to Open 

Cybersecurity Schema Framework (OCSF) Mapping blog.

OCSF is a hierarchical, strongly typed data model that provides 

guidance for normalization and standardization of data. OCSF 

is made up of several Event Classes which are essentially 

generalizations and representations of common security-relevant 

data sets such as the Detection Finding event class that can 

represent alerts or detections from DLP, DSPM, EDR, or CSPM 

tools. It provides normalized fields for common data types, for 

instance, recall the complex four-table join across HTTP, ALB, 

CloudFront, and VPC Flow logs from the previous subsection.

Not only is that a very complex join, all of the default fields in 

those different tables are all different. By default the “source IP” 

is represented in the following ways:

• VPC flow logs: srcaddr

• CloudFront access logs: c-ip

• ALB access logs: clientIp

• WAF access logs: httpRequest.clientIp

You would be forced to use several intermediary CTAS 

statements or UNION ALL between the different tables to 

represent the relevant fields as src_ip. OCSF helps solve this 

by accounting for the various permutations of this data. In 

this same example, all of those fields would be normalized as 

src_endpoint.ip and conversely the “destination IP” as dst_

endpoint.ip. Having a standardized way to reference common 

data points in security-relevant data will greatly streamline 

the development of ETL pipelines, detection content, and 

visualizations for reporting.

There are several tools that will help you convert data into the 

OCSF, or, perhaps consider using Query Federated Search. We 

have a no-code workflow that supports nearly every popular 

query engine and systems for security data lakes and security 

data lakehouses: Amazon Athena, ClickHouse Cloud, Google 

Cloud BigQuery, Amazon Redshift, Snowflake, Databricks, as well 

as popular SIEMs. 

You can keep your optimized written security data lakes or 

security data lakehouses tables in their native formats, and use 

our Configure Schema workflow to dynamically normalize that 

data at query time. If you are interested in seeing a demo of that, 

hit me up on LinkedIn or reach out to our sales folks for a demo. 

Operators are standing by.

https://www.query.ai/resources/blogs/query-absolute-beginners-guide-to-ocsf/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/definitive-guide-to-open-cybersecurity-schema-framework-ocsf-mapping/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/definitive-guide-to-open-cybersecurity-schema-framework-ocsf-mapping/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07


©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  28

Best Practices for Building & Running a Security Data Lake on Amazon S3

Wrap Up
As you can (hopefully) tell from this whitepaper, one does not 

simply build a security data lake, a lot of optimization work must 

be considered at the forefront.

In this paper, you learned the core building blocks and best 

practices required to build a high-performance security data 

lake or lakehouse on Amazon S3. From addressing the small file 

problem and selecting optimal data formats to implementing 

partitioning, compression, indexing, and leveraging open table 

formats, this guide walked through the critical components 

needed to write and query data efficiently. You also gained 

insight into performance optimization techniques for common 

query operations such as joins, aggregations, and ordering, 

ensuring your architecture can scale with security telemetry and 

detection needs.

By applying these practices, security teams can fine-tune their 

data lakes and lakehouses for better cost-efficiency, faster query 

performance, and higher-quality analytics and detections. Take 

your next step: evaluate your current setup, start optimizing 

key areas, and embrace a modern data architecture that enables 

scalable, flexible, and future-proof security operations.

Until next time…

Stay Dangerous



©2025 Query.AI, Inc.  •  All rights reserved  •  QWP-08  •  29

Best Practices for Building & Running a Security Data Lake on Amazon S3

Query: Making Open Federated 
Search for Security a Reality 
Query aims to deliver visibility into all relevant data for security 
teams. We provide a federated search solution that allows  
operators to access data at the source and in your data lakes, 
creating opportunities for more nimble and cost efficient data 
storage architectures.

Our customers are using Query to expand visibility for security 
investigations, threat hunting, and incident response. They are 
drastically reducing the time and complexity of repetitive search 
tasks and improving outcomes for investigations. Expose your 
security data with Query.

Ready to expedite your  
security investigations with  
open federated search for security?
For more information visit: www.query.ai

https://www.query.ai?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07

