=(Query

Best Practices for Building & Running a
Security Data Lake on Amazon S3

Contributed by: Jonathan Rau - VP/Distinguished Engineer, Query

rved « QWP-08

Best Practices for Building & Running a Security Data Lake on Amazon S3

Table of Contents

Introduction to Amazon S3

.. 1
WTF is @ SECUNItY Data LAKE(NOUSE)?eeiceeeeeeceeeeraeraesseeseessessessassssssessssssessessassssssessasssssssssassssssesssessesssssssssessessassasssessassassssssassasssessasses 3
Common Security Data Lake(house) COMPONENTESceeceereereerecreereenesseeseessesseessessessesssesssssasssssssssessassssssessassasssssssssasssassassassssssassassns 5
Performance OPtimiZation BeST PraCliCescuciriererecrinseeneenecseesaesesseessesssssesssessessassssssssssessessessasssssssssssssessessassassssssasssessessessaessassans 8
WP UP coeiiiiiiiiiiieeiicnneiicnsnnecssnssesssnsessssnsessssnsssssssssssssassssssassssssassssssasssssssssssssssssssssssesssssssssssssssssssssssssssessssssessssssssssssssssssssessssassssssasssssnasssssnasas 28

©2025 Query.Al, Inc. « All rights reserved « QWP-08

Best Practices for Building & Running a Security Data Lake on Amazon S3

Introduction to Amazon S3

For almost as long as Hadoop
Distributed File System (HDFS)

could mount S3 buckets, data lakes
(then simply called data warehouses)
were built on Amazon S3.

Though you could argue the
phenomenon stretches even further
back, with S3 a popular durable storage
location for raw and archival data for big
data and security teams for nearly two
decades. As the big data engineering
ecosystem kept growing, building data
lakes (and later, data lakehouses) on
Amazon S3 and other public cloud object
storage became table stakes.

With the advent of popular query
engines such as PrestoSQL and Trino,
as well as the further development of
metadata catalogs and metastores such
as Hive Metastore (HMS), this option
made more and more sense.

To provide potential customers with
seamless onboarding, Amazon
developed several complimentary
services over the years such as Amazon
Elastic MapReduce (EMR), EMR
Serverless, AWS Glue, Amazon Athena,
and AWS LakeFormation.

All of these services are typical
cornerstones of building a successful
data lake or data lakehouse on
Amazon S3.

=(Query

While, in theory, it’s simple to move or
write bulk data with streaming, micro-
batching, or ad-hoc batch workloads
onto Amazon S3, catalog it with AWS
Glue, and query it with Amazon Athena,
there is way more to it than that.

With security teams starting to adopt
security data lakes and security data
lakehouses and using Security Data
Pipeline Platforms (SDPP) and other data
mobility technologies, the stakes are
even higher for security teams to get it
right the first time.

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 1

Best Practices for Building & Running a Security Data Lake on Amazon S3

In this whitepaper, you will learn the various features and AWS-
native tooling that can be used to build a security data lake or
security data lakehouse. You will learn best practices around
writing data such as dealing with the “small file problem”, data
formats, compression, partitioning, indexing, and open

table formats.

Additionally you will learn about efficient query patterns such
as optimizing your queries, joins, aggregations, ordering - we
will demystify their inner workings. By the end of this paper, you
will have the knowledge to fine-tune your security data lake or
security data lakehouse performance.

Author’s Note: While these optimization tips are mostly focused
on Amazon S3 data being queried by Amazon Athena, they can
be broadly applicable to building security data lakes or security
data lakehouses on Azure Blob (ALDSv2), other S3 compatible
storage (Ceph, Bamboo, Yandex), and querying with a variety of
other engines such as self-hosted Trino, DuckDB, or ClickHouse.

=(Query

2 m

& o |l

You have options while building your securtiy data lakehouse.

©2025 Query.Al, Inc. + Allrights reserved « QWP-08 - 2

Best Practices for Building & Running a Security Data Lake on Amazon S3

WTF Is a Security Data Lake(House)?

Author’s Note: If you are already familiar
with what a security data lake or lakehouse
is, and the common components used
within, feel free to skip over the next

two sections.

A security data lake and a security
data lakehouse are related but distinct
architectures used by modern Security
Operations (SecOps) and Security Data
Operations (SecDataOps) teams to
manage and analyze large volumes of
security telemetry.

What makes a data lake a data lake is the
ability to store disparate data of different
kinds in one area and analyze or search

it with a separate compute layer. By
separating the compute layer from the
storage layer, these systems are typically
more cost-effective and higher-scaling
than traditional databases, OLAP or
otherwise (OLTP), and are often far more
cost-effective than a traditional

Security Information & Event Management
(SIEM) tool.

In the simplest terms, a security data lake is
a security-focused data lake which is a data
repository that can store unstructured,
semi-structured, and structured data

used for analytics, detections, searching,
and visualization. The data is (typically)
stored in its raw or native forms, such as

in JSON, CSV, TSV, or text files and utilize
the relatively cheaper storage of data

to contain high volumes of data from

EDR telemetry, SaaS/cloud audit and
authentication logs, IDS/IPS, firewalls, and
similarly voluminous data sources.

Security data lakes built on Amazon S3
utilize the cheaper storage ($23/TB for
standard tier) smartly alongside data
lifecycle rules to systematically move data
of a certain age or type through less-
durable (but cheaper) storage tiers before
finally archiving them in Amazon S3 Glacier
or completely deleting the data sets.

Additionally, specific encryption and
access controls can be applied on the data
to maintain a higher level of information
security and information assurance.

=(Query

Querying this data has often relied on
moving the archival data out of the

lake into searchable systems such as
Amazon OpenSearch Service or another
dedicated SIEM or commercial data
intelligence platforms such as Databricks
or Snowflake. Data can also be queried
directly from Amazon S3 using Amazon
Athena, a serverless query engine based on
PrestoSQL & TrinoDB, when cataloged or
crawled using AWS Glue.

A security data lakehouse builds on the
data lake by providing features typically
available to data warehouses, also

known as Online Analytics Processing
(OLAP) (or simply, analytics) databases.
Features include the ability to ensure
ACID transactions (Atomicity, Consistency,
Integrity, Durability) so that reads and
writes do not conflict with each other.

Additionally, other features such as
schema enforcement, fine-grained access
controls, and even advanced features such
as liquid clustering, bloom filters, indexing,
partitioning, and schema evolution can

be supported.

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 3

Best Practices for Building & Running a Security Data Lake on Amazon S3 -— (() U e ry

In the AWS ecosystem, the services
used to build a security data lake and
a security data lakehouse are often the
exact same.

The ACID transactions and other features
are applied by advanced features of the
same services and the usage of open
table formats such as Apache Iceberg,
Apache Hudi, and Delta Lake. We have p . oo :
written about building Apache Iceberg N3 ~ . s diy’ "y
data lakehouses on S3 here, and have
started a series on doing the same with
Delta Lake here.

Blog: Amazon Athena and Apache Iceberg for Your SecDataOps Journey

The outcomes are the ability to
accelerate migrations away from SIEMs
or log management tools to ultimately
reduce or at least control costs and to
provide more utility with the data.

While mainstream SIEMs do provide a
ton of utility in the form of detection
content, visualizations, faster index-
based search, and automation - not all of
these features are required, or desired,

depending on the vendor. Blog: Delta Lake for Security Teams: Scalable Log Management & Analysis

Really a security data lake or security
data lakehouse is about controlling your
own fate, and it’s a popular choice for
these reasons.

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 4

https://www.query.ai/resources/blogs/amazon-athena-and-apache-iceberg-for-your-secdataops-journey/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/delta-lake-security-lakehouse/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/amazon-athena-and-apache-iceberg-for-your-secdataops-journey/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/delta-lake-security-lakehouse/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/delta-lake-security-lakehouse/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/amazon-athena-and-apache-iceberg-for-your-secdataops-journey/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07

Best Practices for Building & Running a Security Data Lake on Amazon S3 - (() U e ry

Common Security Data Lake(House) Components

Now that you know what a security data
lake and security data lakehouse is, let’s
go over the how.

This is a breakdown of AWS services
commonly used to build security data
lakes and lakehouses, along with
examples of external tools (e.g., SDM
platforms, orchestrators) that integrate
with or enhance these architectures.

Understanding the services used goes
beyond the simple “lego blocks” and also
gets into the financial due diligence you
will be expected to perform as part of
your SecDataOps program.

You should thoroughly understand the
pricing calculations, and thus understand
what cost levers you can pull. While S3
has a simple per-GB storage calculation,
it’s a little less clear how to forecast out
the Get/List API calls that you are also
charged for.

Likewise, the scan charges for Athena
are easy to understand, but the compute
consumption side (DCUs) may not be if
you use provisioned capacity.

Common Services

These are the baseline services that are required to have a self-contained
system for both the storage and compute layers.

e \
Amazon S3: S3 is an object-storage service that can handle
petabytes (or even exabytes) of data. Comes with built in
encryption, data lifecycle management, metadata management,
and access controls (S3 bucket policies).
\ Y,
e A
AWS Glue: The Glue Data Catalog is a metastore that registers
the schema of data stored within specific paths in S3. Advanced
users can also register partitions and indexes to optimize query
performance. AWS Glue "also provides ETL and data discovery
capabilities via Glue Jobs and the Glue Crawler, respectively.
\ Y,
e A
Amazon Athena: A serverless SQL query engine based on
PrestoSQL and Trino. When the data schemas are registered in Glue
Data Catalog, seamlessly query the data with Athena as if they
were native database tables.
\ Y,

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 5

Best Practices for Building & Running a Security Data Lake on Amazon S3 - {(} U e ry

Specialized Services

These are services that can be used in addition to the previous three to provide
extra access control, governance, querying, and visualization capabilities as well
as data streaming and loading.

. A
AWS LakeFormation: Provide fine-grained access control to tables, views, or specific columns within Athena/Glue
tables backed on AWS. This allows you to control what specific AWS identities can access what data and how. For
instance, you can lockdown an AWS IAM Role that has full Glue and S3 access to only be able to execute READ
actions on a specific table.

\ J

. A
Amazon Redshift Spectrum: Amazon Redshift is a purpose-built OLAP data warehouse used for petabyte scale
slicing-and-dicing and analytical workloads. Redshift Spectrum allows you to directly query Athena/Glue tables
within the Redshift engine to provide OLAP capabilities without moving all of the data.

\ y,

. A
Amazon QuickSight: A serverless Business Intelligence and reporting service that can integrate with Athena and
Redshift to create visualizations, charts, and apply Al-powered insights using Amazon Q for Redshift.

\ y,

. A
Amazon Data Firehose: Formerly known as Kinesis Data Firehose, this service allows you to perform in-transit ETL
and directly write to Amazon S3 tables with specific partition paths, compression, buffering, and data formats.

While it can be a relatively expensive service, it is completely serverless and popular for moving native AWS
sources into S3.
\ y,

©2025 Query.Al, Inc. + All rights reserved « QWP-08 « 6

Best Practices for Building & Running a Security Data Lake on Amazon S3 -— (() U e ry

External Tooling

For data sources outside of the AWS ecosystem, or for host-based data sources such as
Windows Event Logs or Kubernetes logs, commercial and open-source tools are a popular
choice. Many of these tools, and security-specific pipeline tools called Security Data
Management (SDM) tools natively integrate with Amazon S3 similarly to Data Firehose.

e N
FluentBit: FluentBit is a telemetry agent that can be configured to move dozens of discrete types of data from
Linux and Windows hosts as well as containerized and Kubernetes environments into Amazon S3. Basic filtering and
pre-processing can also be applied.

\ Y,

e N
Falco Sidekick: Sysdig Falco is a runtime security agent that uses eBPF and kernel monitoring on Linux, Docker, and
Kubernetes environments to detect suspicious and malicious behavior. It is a popular open source monitoring tool,
Sidekick is a daemon that can move this specialized data onto Amazon S3 (and several other sources) natively.

\ Y,

e N
Cribl: Cribl is a data telemetry management system that provides a myriad of mechanisms to move host-based data
(via Cribl Edge) and other push & pull data sources (via Cribl Stream) to downstream sources such as Amazon S3.
Cribl is more synonymous with a Platform-as-a-Service (PaaS) tool that provides a great deal of customization and
capability for processing and writing data to S3, but requires deep domain understanding to utilize effectively for
that purpose.

\ Y,

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 7

https://docs.fluentbit.io/manual/pipeline/outputs/s3
https://docs.fluentbit.io/manual/pipeline/outputs/s3
https://github.com/falcosecurity/falcosidekick/blob/master/docs/outputs/aws_s3.md
https://github.com/falcosecurity/falcosidekick/blob/master/docs/outputs/aws_s3.md
https://docs.cribl.io/stream/destinations-s3/
https://docs.cribl.io/stream/destinations-s3/

Best Practices for Building & Running a Security Data Lake on Amazon S3

Performance Optimization Best Practices

While it is simple enough to create a S3
bucket, dump JSON data into it, torture
yourself crawling it with AWS Glue, and
querying it with Amazon Athena-that
does not make an effective security data
lake or security data lakehouse.

¢ T.RE

S d

Ll

s
One does not simply dump youfdata into S3 and call ita
security data lake >:(

And while you certainly could do that
and be fine if you only had a few 100MBs
or dozens of GBs of data to query in an
emergency, it would not be performant
at all.

Think of the security jobs to be done
that you want to support with this
architecture. Is saving a few $1000 a
month on SIEM costs worth it when
you’ll have 10X slower queries that cost
almost the same in Athena?

Is it worth being able to immediately join
contextual datasets with detections if

it takes 2X as long and 5X as expensive
versus you analysts opening up 10 tabs in
Google Chrome?

What's that tired old mantra? Don't let

perfect be the enemy of good? Think of
the inverse, don’t let “good enough” be
the enemy of good.

SecOps and SecDataOps teams, as well
as all of your stakeholders and customers
certainly deserve better and that means
meeting a minimum standard of at least
having performance optimization versus
your legacy SIEM, if not an outright cost
optimization to go along with it.

And even if you're a SMB - as an
overwhelming majority of companies
are with less than 500 employees - don't
think that your data volumes cannot
grow to significant scales. Even a small
startup can easily rack up 10s if not 100s
of TBs per month across your entire
estate of cloud logs, host-based logs,
and other security-relevant signals from
productivity and developer tools like
Zoom, Slack, GitHub, Hubspot, and more.

=(Query

So with all that in mind, before we

get into optimizing your writes and
reads, ensure that you are building

a security data lake or security data
lakehouse for the right reasons! You
should always work backwards from
your main stakeholders and SecDataOps
requirements.

Sure, you can save oodles and oodles

of currency by reducing your SIEM
ingestion license and using S3’s $23/TB
storage, but what happens when you are
scanning 100s of GBs to TBs to fulfill your
detections?

Amazon Athena is $5/TB of data
scanned, simple napkin math shows that
a detection across network data such as
ZScaler ZIA, Akamai firewall logs, AWS
VPC Flow Logs, and otherwise to look
for known malicious C2-associated IP
addresses or data transfer volumes over
specific thresholds can be several times
that per-terabyte cost.

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 8

Best Practices for Building & Running a Security Data Lake on Amazon S3

=(Query

Even for the smallest environment, you
can rapidly generate several TBs per
month (or faster). Running scheduled
Athena queries that search these data

The first step you must take before starting to build a security data lake or security data
lakehouse is asking yourself: “Do | really need this?”Here are some questions you may
find yourself asking yourself and your team:

sources and compare the source IPs to * Do we have the appropriate human capital to dedicate towards this project? Have we

a large static list of data or performs
aggregations on “bytes in” that scans just

trained our staff to operate with this architecture? Does anyone know SQL?!

Can we effectively execute administrative and operational tasks with this new

5TBs of data collectively is already $2
more expensive than it costs to just store
a fraction of that data.

architecture? Do we have robust alerting, monitoring, and the people to do
something about it?

* Have we taken a hard look at “worst case” compute costs? Will they counterbalance

The above example is entirely notional the cost savings?

but not at all removed from the reality
of the types of workloads and queries
ran on a security data lake or security

data lakehouse.

* Is the data relevant to our analytical, contextual, detection, and/or enrichment
use cases?

* Can we keep the data in place (e.g., in your SIEM, in a traditional database, behind the
API) or will we utilize it better in the lake or lakehouse?

e Are you writing too much, or too little, relevant data in your lake or lakehouse?

* Are the reports and advanced use cases we want to support with this data going to
make a tangible difference?

» Are our detection use cases tuned effectively? Do they run too often? Do they
request too much irrelevant data?

You may find that you are better off staying on the SIEM and reducing the total data size
there by offboarding unneeded sources, or removing unnecessary keys or columns. You
may realize that you don’t have the administrative, financial, nor operational prowess to
support moving to a security data lake or security data lakehouse. You may actually find
that you don’t reduce costs, but maybe you improve operational efficiency, and it could
be worth it. Heck, maybe this paper is the key to unlocking operational efficiency?!

All that out of the way, effective cost optimization all flows from the data, so firstly, let’s
focus on effective writing.

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 9

Best Practices for Building & Running a Security Data Lake on Amazon S3

Performance
Enhancing Writes

While Performance Enhancing

Drugs (PEDs) may give you an unfair
advantage in baseball or mixed martial
arts, Performance Enhancing Writes
(PEWSs) are a necessity to get any sort
of advantage over a SIEM or other log
management system with a security
data lake or security data lakehouse.

When all of these best practices are
combined they can provide better
value-per-dollar by effectively utilizing
right-sizing and leading to faster reads
downstream, minimizing query runtimes
and data scan sizes. Additionally,

these best practices should also be
deciding criteria from any Security

Data Management (SDM) or other data
mobility solutions you may look at.

While there are a myriad of ETL
enhancements and optimizations to
make, if you cannot effectively write
the data with those tools, you may be
better off going with more customizable
options or adopting another layer of ETL
in between a “staging lake” and your
operationalized security data lake or
security data lakehouse.

=(Query

Minimum necessary fields

As | touched on in the opening to this section, you really need to work backwards from
your use cases. It is very tempting to keep all of the fields for all of the logs, but utilize
previous detection, triage, and response activities and agonize over the details (within
reason) to only bring back relevant data that is either necessary for your detection
logic or for attribution and triage context.

This should be both a combination of pruning down the fields that you actually

need and the activities you actually care about. Do you need to have five different
timestamps if you are writing detections that implicate when an event happened
instead of ended? Do you need the packets transferred if you're just aggregating on
bytes? Do you actually need traffic that was allowed? Only you can decide for yourself.

For instance, let’s consider a basic Amazon VPC flow log which logs virtualized OSI
Layer 4 traffic (TCP/UDP) that comes across your VPCs and hits the various Elastic
Network Interfaces (ENIs) attached to it. This is not representative of all potential
fields, as denoted here, you should be even more aggressive when it comes to adding
extra data into the log not available otherwise.

This log shows accepted traffic from one source to another, both are internal to the VPC,
there are three timestamps as well as the flow log version (the first field, 2).

2 123456789010 eni-1235b8ca123456789 172.31.16.139 172.31.16.21 20641 22 6
20 4249 1418530010 1418530070 ACCEPT OK

You may consider getting rid of the version (unless you maintain a varied amount), as
well as stripping the two “extra” timestamps for start and end of the flow. Additionally,
you may completely want to exclude this data since it was accepted traffic and it is also
internal data. The ENI ID is the main identifier, but do your triage and IR analysts actually
use this for enrichment or pivoting? Is the source IP good enough?

Again, only you can answer this question. The less rows and less columns you carry,

the more cost effective you will be in addition to less data that an analyst has to scan
through. Not every analyst may know every single data point for every log format (unless
you used a standardized data model, more on that later).

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 10

https://docs.aws.amazon.com/vpc/latest/userguide/flow-log-records.html#flow-logs-fields

Best Practices for Building & Running a Security Data Lake on Amazon S3

Optimal Data Formats & Data Types

Traditionally, security appliances and
default log formats were typically
written to text files or CSV (or, God
forbid, XML @). As RESTful services
became more prevalent, logs could be
retrieved via API, often in JSON but
also those other formats. Some security
tools even offer direct exports such
as Broadcom Carbon Black or AWS
GuardDuty able to support seamless
writing into S3.

A commonality with all of these data
sources - CSV, text, TSV, XML, JSON,
etc. - is that they are horribly inefficient
to query at scale. In the case of Amazon
Athena, it does support all of these
with native Serialization/Deserialization
(SerDe) rules but this comes at
additional cost due to the extra
compute and time it takes to fulfill the
query. While analysts can easily open
this raw data up and use CLI or IDE tools
to read them, at TB scale let alone PB
scale this simply will not - well - scale.

You should provide easy to use
interfaces to your analysts, that is your
frontline infantry afterall, who must

be empowered with logistics. The data
should use binary, columnar formats
that are far more efficient to read, filter,
and sort by Amazon Athena and other
tools (DuckDB, ClickHouse, et al). King
among the binary file formats is Apache
Parquet, it is also used by every single
major open table format such as Delta
Lake, Hudi, and Iceberg.

Besides being very query-efficient,
engines that read and write Parquet
benefit from increased data types.

It’s very tempting to turn everything
into a string, but unlike JSON, Parquet
natively supports datetime types as
well as a variety of integer and float
types. In a CSV or text file, that would
be a string, but attempting to generate
a JSON file with a script and writing a
Python dictionary with a natively-typed
datetime would throw an error.

=(Query

It’s more preferential to avoid the
usage of casting or transform operators
at query time, such as transforming

a stringified bytes_in column back
into an integer before running a
mathematical operation on it.

Many commercial SDM and data
mobility tools, such as Cribl, offer the
ability to write data as Parquet natively.
In fact, many AWS services such as VPC
Flow Logs and CloudFront Access Logs
also output in Parquet format natively
as well.

If you are utilizing a homegrown SDM
or ETL pipeline tool, strongly consider
transforming the data and writing it
as Parquet. You can add tools such as
Polars, PySpark, or DuckDB into your
homegrown SDM/ETL stacks to write
the data to Parquet and retain those
proper data types.

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 11

Best Practices for Building & Running a Security Data Lake on Amazon S3

Partitioning the Data

A data partition is just like a partition on a disk, or a partition wall
you installed in your home office, it keeps specific things in their
place. Partitions in Glue are essentially the subdirectories (paths) in
Amazon S3 where data matching a specific categorization is kept.
Partitions should be built from low low-cardinality columns in your
data such as time-based columns (year, month, hour) or on high-level
categories such as a specific vendor, source (e.g., firewall, EDR, IDP),
or otherwise.

You don’t necessarily need to have the partition columns defined in
your data source to write partitions in S3, to S3 they’re just another
folder/path anyway. However, certain open table formats (again,
more on that later) do require you to have the columns available

in the dataset because of the non-reliance on a data catalog (Delta
Lake) or because the partitions are “hidden” (Apache Iceberg).

Before moving any further, what is the so what? Partition data
written to AWS Glue Data Catalog is used within the query planning
phase of an Amazon Athena query. If you specify the partitioned
columns in your dataset, Athena will transparently request all of

the partitions that match your query pattern and only run the query
against the files in those S3 folders/paths. This is also known as
partition pruning or partition pushdown and greatly reduces the time
it takes to return results when queries are not directed against the
whole table, also known as a full table scan.

=(Query

A popular partition format follows along with how partitions are
designed with Hadoop and Hive, this is called a “Hive-like” or “Hive-
compatible” partition which requires the partitions to be labeled. To
make this a bit more obvious, consider the following path (to stay
with our VPC Flow Log examples) that a typical flow log is written
into S3 from your log configuration.

my-datalake-bucket/AWSLogs/account_id/vpcflowlogs/region/year/
month/day/logfiles0001.txt.gzip

The S3 folders, or paths—whatever you want to call it, essentially
define the partitions but this won’t be automatically written into
AWS Glue if you crawled it. Nor will it be automatically written into
Athena using DDL unless you provided PARTITION() data in your
DDL. A lot of data mobility tools, commercial and open-source,

will write your paths out like this which is an antipattern for fast
onboarding and automatic recognition of your partitions. Again, you
could define them in DDL, but then you are stuck automating ALTER
TABLE ADD PARTITION or MCSK REPAIR TABLE queries against each
table with this pattern.

In a Hive-like partition format, the paths should look something like

this example:

my-datalake-bucket/AWSLogs/account_id=account_id/
source=vpcflowlogs/region=us-east-1/year=2025/month=04/day=21/
logfiles@001.txt.gzip

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 « 12

Best Practices for Building & Running a Security Data Lake on Amazon S3

If you crawled the data in the folder underneath s3://my-
datalake-bucket/AWSLogs/ each of those labeled columns would
be automatically added into the table schema definition and all
partitions registered into the Glue Data Catalog. That said, when you
write your queries, you will still need to specify the columns which
pertain to the partitions. Glue is smart enough to get at the partitions
to the “right and left” of the partitions you specify.

Consider the following SQL statement where you want to retrieve
the timestamp of your flow logs and certain fields within a certain
timeframe, in this case, after April 19th 2025.

SELECT

src_ip

src_port

dst_ip

dst_port

timestamp
FROM security_lakehouse.vpc_flow_logs
WHERE timestamp >= TIMESTAMP ‘2025-04-19'

Just because you filtered by timestamp in your predicate, that

is not enough to actually use the partitions. Now, if you were
using Iceberg or Hudi with partitions built off of a specific field, it
would, but for the time being assume this is just boring ole” AWS
Glue Data Catalog native table format.

=(Query

To actually have the partitions pruned in your query plan, you
would need to specify what specific partitions you wanted.

SELECT

src_ip

src_port

dst_ip

dst_port

timestamp
FROM security_lakehouse.vpc_flow_logs
WHERE timestamp >= TIMESTAMP ‘2025-04-19°
AND

year =
AND

month =

In this example, by specifying April 2025 using your predicate
aligned to those specific partitioned-by fields, when Athena
builds your query plan, it is looking for data with a glob pattern
like this: /AWSLogs/account_id=*/source=*/region=%*/
year=2025/month=04/day=*/*. The more partitions you
provide, the more precise the pruning will be. Now instead of
going through potentially 100s of paths, there will be a smaller
amount of data scanned. Now this brings up another potential
antipattern: too many partitions.

“Too many partitions?! What does
that mean?” - vou (@ @ @)

The number of partitions in this table are too damn hight

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 -

Best Practices for Building & Running a Security Data Lake on Amazon S3

Look, look, don’t hate me, that’s what the Athena docs say.

In practice, this can be rather complex, but in theory it is not
too hard. Remember, the partitions are used for the query plan
to only pick up the right data from the right folders/paths in

S3. Now, if you had 10s of 1000s of folders, this would still be
slowed since the parallelization of Athena is largely an unknown
black box - seriously how many paths per “node” are hit? Too
many partitions are introduced when you set partitions off of
high-cardinality fields such as asset identifiers or attributes
such as MAC addresses or IP addresses.

Some vendors do that by default, which is setting you up for
failure. (No really, Azure VNET Flow Logs are written with MAC
Address AND resource-specific ID partitions AND to the minute-
specificity.)

Additionally, if you partition by time too much you have the
same issue. An hourly partition is about as far as you want to
go, and even then, with properly typed timestamps in your
data written in Parquet, you could likely get by with no more
than a day partition. Of course, a lot of this is also dictated by
the actual queries you write, which we will cover in the next
major section around efficiently querying your data. Especially
when you start to introduce advanced query patterns such as
using UNIONS and JOINS or building views across two or more
datasets, now their partitions also come into scope.

=(Query

With that in mind, there is a way to solve this though. As

your security data lake or security data lakehouse tables and
partitions grow in number you can start to implement Indexes
over the partitions. Whatever partitioning strategy you choose,
be consistent with it so that you can make future advanced
query patterns possible without throwing errors and making
your SecDataOps team cry out in agony, gnash their teeth, and
claw off their clothes.

Author’s Note: Consider reading one of my blogs from last
year, Auto-partitioning your Security Data Lake with Apache
PySpark and Amazon EMR Serverless, where | demonstrate
how you can use EMR to apply partitions on some truly big
data. Additionally, while | did not cover it, you can consider
using partition projection to avoid needing to redefine tables

while also not using ALTER TABLE ADD PARTION or MCSK
REPAIR TABLE statements.

Blog: Auto-partitioning your Security Data Lake with Apache PySpark and Amazon EMR Serverless

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 14

https://www.query.ai/resources/blogs/auto-partitioning-your-security-data-lake-with-apache-pyspark-and-amazon-emr-serverless/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/auto-partitioning-your-security-data-lake-with-apache-pyspark-and-amazon-emr-serverless/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html
https://www.query.ai/resources/blogs/auto-partitioning-your-security-data-lake-with-apache-pyspark-and-amazon-emr-serverless/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/auto-partitioning-your-security-data-lake-with-apache-pyspark-and-amazon-emr-serverless/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07

Best Practices for Building & Running a Security Data Lake on Amazon S3

Utilize Partition Indexes

As you learned in the previous section, partitions are good. Use them!
That’s how you keep your data organized and with proper pruning, it
leads to much greater performance versus full-table scans over your
data. You also learned (hopefully) that eventually, no matter how
stringent you are in ensuring minimum necessary partitioning, you
will likely accumulate a lot of damn partitions.

To help account for this, as your partitions grow and you notice
query performance drop, consider implementing partition indexes.
A partition index is a performance optimization feature that helps
speed up queries by indexing the partition keys of a table. The index
is built from a subset of the partition columns already defined in the
table, you can group one or more different partitions into an index
which will fetch any/all of the partitions defined in the column at
query time.

You can build the indexes off of integer, string, and datetime
partitions and support up to three different partition indexes per
table. You should build them to fulfill common query patterns, going
back to the previous example of the flow log table in the previous
subsection, you could build an index that preloaded account_id,
year, month, and day. This would be helpful if you were constantly
querying across data in specific accounts, such as your workloads in
specific AWS Account IDs for your Production environment(s).

Indexes will automatically update as new partitions are created,
however, after you set the index you cannot (nor should you even
want to) modify the partitions. If you add new partitions after the
index is created, you’ll need to ensure they do not change the order
of the previous partitions and you'll have to rebuild your indexes to
account for any new partitions.

=(Query

To define a partition, you build them using the AWS API (via the
Console, API, CLI, or SDKs) such as the Amazon SDK for Python,
boto3. Building on the previous given example, you could build the
index like this.

aws glue create-partition-index \
--database-name security_lakehouse \
--table-name vpc_flow_logs \
--partition-index ‘{
“Keys": [“acccount_id”, “year”, “month”, “day”],
“IndexName"”: “account-yyyymmdd-index”

pe

Frustratingly enough, while Redshift Spectrum, Amazon EMR,
and AWS Glue ETL Spark DataFrames will automatically work
with these partitions but Athena will not, you will need to
modify your table to enable partitioning filters with the following
SQL DML.

ALTER TABLE security_lakehouse.vpc_flow_logs
SET TBLPROPERTIES (‘partition_filtering.enabled’ = ‘true’)

As always, ensure you are working backwards from the querying
use cases, be it detections or ad-hoc queries to design your
indexes in an efficient manner.

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 15

https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html#partition-index-1

Best Practices for Building & Running a Security Data Lake on Amazon S3

Avoid the “Small File Problem”

If you’ve read any of our previous technical blogs on SecDataOps,
or have read even the most basic of literature about data lakes and

data lakehouses, you probably have heard of the “small file problem”.

Athena, and other query engines that execute queries on data in
object storage have to read out the contents of the actual files, duh.
As touched on with partitioning, the larger that query plan and the
larger the actual query execution is, the less performant and more
expensive your queries will become. Sad!

=(Query

Another major antipattern you can introduce in your security
data lake or security data lakehouse is writing way too many
small files, even worse when they are in an inefficient data
format and not partitioned. It's much faster for Athena (and other
engines) to read one big (200-400MB) Parquet file than it is to
read 100 smaller Parquet files that aggregate to the same amount
(2-4MB each).

This performance is exponentially faster when actually using
Parquet, you will certainly get some performance bump with a
similarly large JSON file versus a ton of smaller JSON files, but not
as much as Parquet.

The easiest way to avoid this issue is to address it in your
pipeline(s), but again, you must work backwards from your
detection and searching use cases. If you have a requirement for
near real-time data because you have a certain detection that
needs to be run at a fast cadence, it may be unacceptable to
delay and batch many smaller datasets into a bigger file. This is
only something that you can determine.

For a majority of security use cases that will use a security
data lake or security data lakehouse, you may need that
extremely low latency. Tools such as Amazon Data Firehose or
Cribl Stream can buffer data in a certain time and have desired
file sizes configured.

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 16

Best Practices for Building & Running a Security Data Lake on Amazon S3 -— (() U e ry

However, this needs to be taken into consideration against
your partitioning strategy. For larger environments, it wouldn't
be difficult to generate a TB if not more of data in a single day,
maybe even a single hour. Even when buffering your writes and
writing into the optimal size of 128 MB (as per this AWS blog on
performance tuning) that still ends up being several 1000 files
per TB. When possible, you should fine-tune the sizes of your
files against your query patterns by looking at the stats of the ‘
planning and execution phases of your queries. You can also use
that data to further introduce new partitions and indexes

as required.

Other ways to contend with the “small file problem” is post-
hoc processing. For instance, running a nightly job that will read
the previous 24 hours of data and combine the files into more
optimal sizes, especially if you cannot buffer enough data in
your necessary latency SLA to get the files to the optimal size.
Additionally, you can consider using an open table format such
as lceberg with AWS Glue that can automatically compress

and optimize the files. Delta Lake can also make use of the
optimized writes and post-hoc optimization using the Delta
PySpark extension.

At a certain scale in your security data lake or security data
lakehouse, you will have wrung out all of the compaction and
optimization that you can get, it will be up to your partitioning,
indexing, and query patterns to further optimize your query
performance. At the end of the day, you are not only measured
on compute and data scan sizes in Athena, but also the S3 APIs
like List/Get Object. Having a lot of smaller files can rack those
costs up quickly, as well as potentially outright fail your queries
due to rate limiting.

D
D
©2025 Query.Al, Inc. « Allrights reserved « QWP-08 « 17

Best Practices for Building & Running a Security Data Lake on Amazon S3

Efficient Compression

Finally, we come to compression. If you've worked on a
computer for any length of time you are probably familiar
with ZIP, RAR, or tarballs that downloads often come
compressed with. Compression codecs of various kinds are
used to, well, compress the files so they take up less space on
disk. This is great for cost optimization of storage, but when
you're querying that data you will want to use an efficient
compression codec to ensure your query performance does
not suffer.

This subsection assumes that you will, rightfully, use Parquet
as your data format. Besides being columnar and optimized for
selective reading of fields, Parquet files are also splittable and
can utilize very efficient compression codecs. Read more here
about what file formats and what compression are supported
by Athena, we will only focus on three of them.

=(Query

Really when it comes to compression you have to strike a
balance between cost optimization and query performance
optimization. That is greatly oversimplified, because the actual
queries will cost money as well, so even if you index on storage
costs you may end up nullifying that advantage with poor
query performance.

The three major compression codecs to use with Parquet data

are GZIP, Snappy, and ZSTD. These are all very well supported

by streaming tools as well as data engineering libraries such as
Pandas, Polars, and PySpark.

Compression Type Compression Ratio Decompression Speed

Athena Performance S3 Cost Efficiency Notes

SNAPPY Medium (~1.5-2x) Very Fast

Great for low-latency

Best for speed N) .
interactive queries

Less savings

GZIP High (~2.5-4x) Slower

CPU-intensive;
good for archival or
infrequent access

Slower queries Best storage savings

ZSTD Very High (~3-5x) Fast

Best of both worlds
— especially for large
datasets

Balanced Good savings

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 18

https://delta.io/blog/delta-lake-optimize/

Best Practices for Building & Running a Security Data Lake on Amazon S3

The compression codec that | personally use for our own
security data lakes and security data lakehouses (yeah, we have
multiple) at Query is ZSTD. It offers the best of both worlds
with even more compression ratio versus GZIP, which is default
compression codec used by a lot of security sources that
support direct writes into S3 buckets.

While we may use ZSTD, it may not be the best, consider the
following table for a summary of compression characteristics.

However, you may find that the cost savings are not worth the
additional performance penalty compared to Snappy, which

compresses and decompresses incredibly fast — hence the name.

=(Query

This performance penalty may not become apparent until you are
nearing petabyte scale data storage, which shakes out with host-
level telemetry from EDRs or from firewall appliances that serve
up a high amount of data.

Are you noticing a theme? The Ops part of SecDataOps is
incredibly important to inform your choices and possible actions
here, as well as the financial implications.

It is worth mentioning that you may completely eschew
compression if you have relatively small amounts of data written
per typically queryable time periods. That will give you the best
overall performance, as even Snappy-compressed data has CPU
overhead to decompress and ultimately query.

Metric SNAPPY GZIP ZSTD
L] L]
Compression Ratio ~1.5-2.0x ~2.5-4.0x ~3.0-5.0x
L] L]
Compression Speed Very Fast Slow Fast !
(I |) !
Decompression Speed Extremely Fast Slow Fast ' '
| L J [
CPU Usage .

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 19

Best Practices for Building & Running a Security Data Lake on Amazon S3

Performance Enhancing Reads

We're not done with the performance enhancing jokes yet. If
optimizing your writes into S3 for your security data lake or
security data lakehouse is just a “pictogram” of the “gear”, then
optimizing how you query your data is like injecting 69420
deciliters of Chilean Bull Shark Testosterone directly into your
SecDataOps program. NICO BABY, WE'RE WINNERS!

Author’s Note: GTA IV jokes aside, bull shark testosterone isn’t a
real thing, Chilean or otherwise.

=(Query

While enhancing the performance of your query patterns may
not allow you to defend, and then get stripped of your light
heavyweight strap you will certainly feel like a star. Or at least,
feel less bad when you look at how long that query plan and
query execution took in Athena in preparation to explain to your
leadership why that “Big Money Saving SIEM Migration” thing
ain’t exactly working out...

Actually, nevermind, one more fitness reference. If optimizing
your writes into your security data lake or security data
lakehouse is a good diet, optimizing reads from them is actually
working out. While you can certainly get a lot of performance
mileage, so to speak, from optimizing writes it is how you
ultimately use the data that will be the real measuring stick

for performance.

In this section, we'll dive into some high level query
optimizations you can take into account when developing

your detection content or search patterns. Obviously, since we're
talking about Athena, this will be a very SQL-heavy section.

©2025 Query.Al, Inc. « All rights reserved « QWP-08 - 20

Best Practices for Building & Running a Security Data Lake on Amazon S3

Limit Fields Queried

This is about as “SQL 101" as it gets here. Remember that whole
minimum necessary thing? Well it applies up and down your
whole stack. Whether creating detection content or performing
ad-hoc searches or writing analytics, you want to only bring back
the data you'll need.

Just because you right-sized the amount of columns (or keys)
that you’ll ultimately define in your tables, doesn’t mean that
every single query needs to retrieve the same data.

While it’s very hard to estimate performance efficiencies in
the form of percentages of data scanned or the amount of
time that the query ultimately takes, you will always be
faster when you request specific data from your Athena
tables versus using SELECT *,

=(Query

Again, going with the VPC flow logs table example, grabbing the
right amount of data to fulfill your query is paramount.

So do more of this:

SELECT

src_ip

src_port

dst_ip

dst_port

timestamp
FROM security_lakehouse.vpc_flow_logs
WHERE timestamp >= TIMESTAMP ‘2025-04-19°

And do less of this (actually, don’t do this):

SELECT
*

FROM security_lakehouse.vpc_flow_logs
LIMIT

Even in Parquet, reading unnecessary columns increases data
scanned and decompression overhead. By selecting only the
fields that you need you will reduce memory usage, speed up
execution, and lower query cost with Athena.

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 « 21

Best Practices for Building & Running a Security Data Lake on Amazon S3

Partition Pushdown

This is largely redundant with what was detailed in the
Partitioning the data subsection, but it is worth
repeating again.

Your partitions are not automatically applied.

(Author’s Note: they can be in certain instances with Hudi and Iceberg!)

When you're using the default Glue table format, you must
always specify the partitioned field(s) in your predicates. This
goes doubly for tables that use partition indexes, you won't get
any of the performance benefits of partitioning nor indexing if
you are not specifying the fields.

While using the Athena console in AWS, the fields that are
partitioned will be denoted with a (partitioned) label next to
them, this information is gleaned from the Glue Data Catalog.

If you will be remotely querying with Athena using the SDK or
another intermediary service, it would behoove you as part of
your SecDataOps governance duties to document all of the table
schemas along with partitions and indexes. Ideally, in a rich-text
searchable back end such as Confluence or another tool, and not
just living in a Slack message.

Information access is a big part of a successful adoption for

a SecDataOps program, as well as your security data lake or
security data lakehouse journey. You could apply that diligence
to just about everywhere - your pipelines, your data sources,
normalization schemes, table metadata, and more!

=(Query

Optimized Ordering

The SQL ORDER BY clause will order a result set, ascending or
descending, off of a specific column. These types of queries are
helpful for determining “Top N” or “Bottom N” insights from your
various tables.

You should almost always use these with a LIMIT confined by

how many insights you're trying to find. If the data is going into a
visualization or report, think hard about the readability as well as
the usefulness of providing “Top N” or “Bottom N” sort of metrics.

SELECT

src_ip,

bytes_in

timestamp
ORDER BY bytes_in DESC
LIMIT

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 22

Best Practices for Building & Running a Security Data Lake on Amazon S3

Optimized Grouping

The SQL GROUP BY clause is used to create summary
aggregations of your data, helpful for measuring averages or
other mathematical operations by specific fields in your data. For
instance, as an extension of a “Top N” query for a visualization,
you can use GROUP BY to get the top 25 external IP addresses

by data volume, which may be useful for firewall or IDS rule
finetuning or as part of determining data exfiltration impacts.

For more information on GROUP BY and some hands-on examples,
check out our Introductory SQL for SecOps: Exploratory Data
Analysis with DuckDB blog.

When performing aggregations, only include necessary fields in
the GROUP BY clause to minimize CPU and memory usage within
the Athena nodes. Athena distributes rows to worker nodes
based on a hash of the GROUP BY columns. It’s also important

to group by columns that have a uniform distribution of values,
as this helps balance the workload across nodes. If the data is
unevenly distributed, one node may handle a disproportionate
amount of the data, leading to performance bottlenecks while
other nodes remain underutilized.

Sometimes, redundant columns are added to the GROUP BY
clause due to SQL requirements, any selected field must be
either grouped or aggregated. For example, if you're grouping
by src_ip and also selecting src_port, you may end up writing
GROUP BY src_ip, src_port, even though src_port

is uniquely determined by src_ip in each row of your flow

log data.

=(Query

To avoid this and improve performance, you can use the
ARBITRARY () function. It returns an arbitrary value from the
group and allows you to select values like src_port without
including them in the GROUP BY clause.

If you will be grouping and ordering, apply the ordering last, and
ensure that a LIMIT is defined overall that is both actionable and
relevant to whatever report or investigation

you’re conducting.

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 23

https://www.query.ai/resources/blogs/introductory-sql-for-secops-exploratory-data-analysis-with-duckdb/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/introductory-sql-for-secops-exploratory-data-analysis-with-duckdb/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07

Best Practices for Building & Running a Security Data Lake on Amazon S3

Optimized Joins

SQL JOINS are an advanced function that combines data across
two or more tables, useful for enrichment and analytical queries.
For instance, you may wish to join your VPC flow log data by
eni_id into another table (ec2_asset_info) to retrieve asset-
specific information such as the hostname or instance_id.
This can also be used to join disparate log sources together to
tell the full story of the flow of traffic such as joining Amazon
CloudFront, AWS WAF, Amazon Application Load Balancer,

and VPC flow logs together by a specific source IP. However,
doing something that complex can lead to a hefty performance
degradation and the query may outright fail.

The reason for this is that, using typical equality-based joins,
Athena uses a distributed hash join strategy. It builds an in-
memory “lookup table” from the right-hand table and distributes
it to all worker nodes. The left-hand table is then streamed, and
rows are joined on matches in the lookup table. Because the
lookup table is in memory, keeping the right-hand table as small
as possible reduces memory usage and speeds up the join. The
more tables that are used, the slower the performance will be.

Just like with ordering, data skew can negatively impact join
performance. If many rows share the same join key values, a
single worker node may receive a disproportionate amount

of data to process, leaving other nodes underutilized. To
ensure efficient parallelism, try to use join keys with a uniform
distribution of values across rows.

=(Query

For further optimization, ensure that you are filtering first in your
WHERE clause to select a specific IP address along with other
behaviors, and apply your partition pushdowns. Remember, this
goes back to the optimized write section, you’ll want to ensure
that you have consistent partitioning (and indexing) strategies
across all of your tables in your security data lake or security data
lakehouse. You can also consider selecting distinct values with
SELECT DISTINCT and even applying aggregations beforehand
to further speed up the query execution.

For more advanced uses, you can use CREATE TABLE AS SELECT
(CTAS) to create an intermediary table of an even smaller size
and apply a dynamic partitioning strategy along with dropping
empty values for the data that you want to join on such as in the
following SQL statement.

SELECT

src_ip

src_port

dst_ip

dst_port

timestamp
FROM security_lakehouse.vpc_flow_logs
WHERE timestamp >= TIMESTAMP ‘2025-04-19’

For extremely complex joins, you should still consider

further breaking up the queries into multiple steps and using
intermediary SecDataOps automation workflows to perform the
joins in memory by retrieving the filtered data from Athena and
then writing the results to Polars DataFrames, Arrow tables, or
using DuckDB on the raw files to accomplish the join and not put
so much cost pressure on Athena.

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 24

Best Practices for Building & Running a Security Data Lake on Amazon S3

Avoid Functions and Casting

Calling back to the Optimal Data Formats & Data Types
subsection, you should avoid using functions and casting

when at all possible. Casting is an operation that dynamically
changes the data type of a specific field, or fields. This is
common to use when using poorly written tables such as data
that stringifies all fields in a JSON file, you’d need to use casting
to transform specific fields into specific types to be able to use
prebuilt functions.

For instance a statement like SELECT SUM(CAST (bytes_in

as INTEGER)) as sum_bytes FROM security_lakehouse.
my_bad_vpc_table ORDER BY sum_bytes DESC LIMIT 1000
would take much longer than executing the same query where
bytes_in is the proper integer data type.

Athena can only push filters down to the storage layer (like

S3) if the filter expression is simple. Using a function or cast

on a column blocks predicate pushdown, causing Athena to
scan more data than needed, and defeats the partitioning and
indexing strategy you use anyway. Like anything else in Athena,
operations are applied per row and will consume extra CPU per

row processed, so casting can negatively affect performance on

very large datasets.

Likewise, casting will negatively affect joins by disrupting the
hashed join operation that happens under the surface; it’s
more expensive and less efficient to hash a field when a cast, a
function, or both are used.

=(Query

Again, this can be prevented by ensuring that your field is in the
correct data type for the operations that will be applied against.
This goes doubly for more specialized functions such as FROM_
IS08061_TIMESTAMP that will convert a stringified 1ISO 8061
timestamp into a proper SQL TIMESTAMP data type.

Not all functions are necessarily “bad” though, using
mathematical aggregation such as COUNT () and SUM()

are native aggregate functions that are optimized by Athena.
However, if you'll be using the functions in JOIN or WHERE
clauses, the performance penalty will resurface. Again, working
backwards from your use cases should drive your table

schema design!

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 25

Best Practices for Building & Running a Security Data Lake on Amazon S3

Consider Using Views

A SQL view is a logical table built from one or more other tables,
this can be useful to simplify complex query patterns by defining
a view with all of your aggregations, joins, unions, and other
specialized operations.

In cases where you SecDataOps analysts and engineers are
directly authoring queries instead of scheduling them or used
outside of automated detection content, having views defined
can reduce cognitive load and ensure that well optimized queries
are predefined.

Views will not provide any performance improvements. \liews
in Athena are not cached or materialized and essentially work as
inlined functions that will apply your query logic at query time.
So predefining complex joins in the view is not different than
executing a complex join in your SQL statements.

If you are finding that you are making views to disaggregate
certain datasets (such as using CROSS JOIN UNNEST to loop
through arrays) or to cast and convert several data types, this
type of feedback must make its way back up your ingestion loop.

=(Query

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 26

Best Practices for Building & Running a Security Data Lake on Amazon S3

Consider Normalization

As we write about in a lot of our content, we love the Open
Cybersecurity Schema Framework (OCSF). If this is your first time
reading about the OCSF, or if you are coming back to it after an
absence, consider reading our beginner and executive-friendly
blog: Query Absolute Beginner’s Guide to OCSF. For a more
detailed explanation of OCSF, see our Definitive Guide to Open
Cybersecurity Schema Framework (OCSF) Mapping blog.

OCSF is a hierarchical, strongly typed data model that provides
guidance for normalization and standardization of data. OCSF

is made up of several Event Classes which are essentially
generalizations and representations of common security-relevant
data sets such as the Detection Finding event class that can
represent alerts or detections from DLP, DSPM, EDR, or CSPM
tools. It provides normalized fields for common data types, for
instance, recall the complex four-table join across HTTP, ALB,
CloudFront, and VPC Flow logs from the previous subsection.

Not only is that a very complex join, all of the default fields in
those different tables are all different. By default the “source IP”
is represented in the following ways:

e VPC flow logs: srcaddr
* CloudFront access logs: c-ip
e ALB accesslogs: clientIp

 WAF access logs: httpRequest.clientIp

=(Query

You would be forced to use several intermediary CTAS
statements or UNION ALL between the different tables to
represent the relevant fields as src_ip. OCSF helps solve this
by accounting for the various permutations of this data. In

this same example, all of those fields would be normalized as
src_endpoint.ip and conversely the “destination IP” as dst_
endpoint.ip. Having a standardized way to reference common
data points in security-relevant data will greatly streamline

the development of ETL pipelines, detection content, and
visualizations for reporting.

There are several tools that will help you convert data into the
OCSF, or, perhaps consider using Query Federated Search. We
have a no-code workflow that supports nearly every popular
query engine and systems for security data lakes and security
data lakehouses: Amazon Athena, ClickHouse Cloud, Google
Cloud BigQuery, Amazon Redshift, Snowflake, Databricks, as well
as popular SIEMs.

You can keep your optimized written security data lakes or
security data lakehouses tables in their native formats, and use
our Configure Schema workflow to dynamically normalize that
data at query time. If you are interested in seeing a demo of that,
hit me up on LinkedIn or reach out to our sales folks for a demo.
Operators are standing by.

©2025 Query.Al, Inc. « Allrights reserved « QWP-08 - 27

https://www.query.ai/resources/blogs/query-absolute-beginners-guide-to-ocsf/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/definitive-guide-to-open-cybersecurity-schema-framework-ocsf-mapping/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07
https://www.query.ai/resources/blogs/definitive-guide-to-open-cybersecurity-schema-framework-ocsf-mapping/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07

Best Practices for Building & Running a Security Data Lake on Amazon S3

Wrap Up

As you can (hopefully) tell from this whitepaper, one does not
simply build a security data lake, a lot of optimization work must
be considered at the forefront.

In this paper, you learned the core building blocks and best
practices required to build a high-performance security data
lake or lakehouse on Amazon S3. From addressing the small file
problem and selecting optimal data formats to implementing
partitioning, compression, indexing, and leveraging open table
formats, this guide walked through the critical components
needed to write and query data efficiently. You also gained
insight into performance optimization techniques for common
query operations such as joins, aggregations, and ordering,
ensuring your architecture can scale with security telemetry and
detection needs.

By applying these practices, security teams can fine-tune their
data lakes and lakehouses for better cost-efficiency, faster query
performance, and higher-quality analytics and detections. Take
your next step: evaluate your current setup, start optimizing

key areas, and embrace a modern data architecture that enables
scalable, flexible, and future-proof security operations.

Until next time...

Stay Dangerous

=(Query

©2025 Query.Al, Inc. « All rights reserved « QWP-08 - 28

Best Practices for Building & Running a Security Data Lake on Amazon S3 - (() U e ry

Query: Making Open Federated
Search for Security a Reality

Query aims to deliver visibility into all relevant data for security
teams. We provide a federated search solution that allows
operators to access data at the source and in your data lakes,
creating opportunities for more nimble and cost efficient data
storage architectures.

Our customers are using Query to expand visibility for security
investigations, threat hunting, and incident response. They are
drastically reducing the time and complexity of repetitive search
tasks and improving outcomes for investigations. Expose your
security data with Query.

~
Ready to expedite your
security investigations with
open federated search for security?
For more information visit: www.query.ai
y,

©2025 Query.Al, Inc. « All rights reserved « QWP-08 - 29

https://www.query.ai?utm_source=whitepaper&utm_medium=pdf&utm_campaign=qwp-07

